负荷曲线聚类是电力大数据研究的基础,通过聚类来挖掘用户的用电模式,从而为电力调控提供决策。针对传统的聚类方法难以处理高维多变量数据,提取时间特征较困难,存在特征提取与聚类过程分离的问题,采用基于一维卷积自编码器的深度卷积...负荷曲线聚类是电力大数据研究的基础,通过聚类来挖掘用户的用电模式,从而为电力调控提供决策。针对传统的聚类方法难以处理高维多变量数据,提取时间特征较困难,存在特征提取与聚类过程分离的问题,采用基于一维卷积自编码器的深度卷积嵌入聚类方法(deep convolutional embedded clustering based on one-dimensional convolution autoencoder,DCEC-1D),对负荷曲线进行聚类并提取典型负荷曲线。首先,用一维卷积自编码器(one-dimensional convolutional autoencoder,1D-CAE)提取特征,送入K-means得到初始簇中心;然后,利用自定义的聚类层对提取的负荷特征进行软分布;最后,为防止扭曲嵌入空间,将聚类损失和重构损失相结合作为损失函数联合优化,得到最终的聚类结果。算例分析以美国加州大学欧文分校(University of California Irvine,UCI)提出的数据集中的葡萄牙居民用户实际采集数据为研究对象,通过戴维森堡丁指数(Davies-Bouldin index,DBI),CH分数(Calinski-Harabaz index,CHI),轮廓系数(Silhouette coefficient,SC)这3个聚类指标进行定量分析,并通过t分布随机邻域嵌入(t-distributed stochastic neighborhood embedding,TSNE)进行可视化分析。试验结果表明,相较于传统的K-means、主成分分析法(principal components analysis,PCA)+K-means,该方法聚类指标有大幅度提升。对比基于局部结构保留的深度嵌入聚类(improved deep embedded clustering,IDEC),基于一维卷积的深度嵌入聚类(deep embedding clustering method based on one dimensional convolutional auto-encoder,DEC-1D-CAE)和1D-CAE+K-means,所提方法的DBI分别降低了约0.15、0.08和1.50,CHI提高了约19384.92、12488.48和36485.72,SC提高了约0.10、0.05和0.63。展开更多
在地震数据处理中,随机噪声压制是提高地震数据信噪比的关键。针对目前卷积神经网络大多关注局部特征以及在特征提取方面的局限性,提出了一种结合全局上下文和注意力机制的深度卷积神经网络(global context and attention-based deep co...在地震数据处理中,随机噪声压制是提高地震数据信噪比的关键。针对目前卷积神经网络大多关注局部特征以及在特征提取方面的局限性,提出了一种结合全局上下文和注意力机制的深度卷积神经网络(global context and attention-based deep convolutional neural network,GC-ADNet),并用残差学习压制地震数据随机噪声的方法。其中,全局上下文模块(global context block,GCBlock)既关注局部信息,又能提取全局上下文信息;注意力模块(Attention Block)不仅强调关键特征,还能高效提取隐藏在复杂背景中的噪声信息。加入残差学习和批量规范化方法加快了网络的训练和收敛速度,使用扩张卷积扩大上下文信息并降低计算成本。将GC-ADNet应用于合成和实际地震数据处理,并与现有的去噪方法进行了比较。实验结果表明,GC-ADNet能够更有效压制随机噪声,并保留更多局部细节信息。展开更多
有效的短期电力负荷预测模型有利于保障电力系统稳定且高效地运行。为此,首先提出了一种具有相邻反馈的混合回声状态网络(hybrid echo state network with adjacent-feedback loop reservoir,HALR)模型,用以避免传统浅层模型使用单一类...有效的短期电力负荷预测模型有利于保障电力系统稳定且高效地运行。为此,首先提出了一种具有相邻反馈的混合回声状态网络(hybrid echo state network with adjacent-feedback loop reservoir,HALR)模型,用以避免传统浅层模型使用单一类型神经元易产生奇异解的问题。然后,基于深度信念网络(deep neural network,DBN)和HALR模型提出了一种深度混合储备池计算(deep hybrid reservoir calculation,DHRC)模型,以提高传统模型的预测精度和效率,该模型实现了DBN优秀特征学习能力和HALR强大逼近性能的结合。将DHRC模型应用于比利时蒙斯大学采集的某地区电力负荷数据集,最终的X_(NRMSE)、X_(RMSE)和X_(MAPE)分别为0.6591、0.0541和4.8523%。最后,在西北某电网供电公司的实际应用中再次证明了DHRC模型的有效性。实验结果表明,与预测效果最佳的浅层模型HALR相比,DHRC的X_(NRMSE)、X_(RMSE)和X_(MAPE)分别降低了65.1685%、65.1079%和60.0954%;与预测效果较好的深度模型LSTM和DBEN相比,DHRC模型的预测效率分别提高了36.5566%和9.4276%。展开更多
由于采集环境及仪器性能的限制,采集的地震信号中含有较强的随机噪声,对后续的处理和解释带来很大困难。多尺度几何分析近年来受到关注,在Shearlet变换域中引入非局部均值(NLM,non-local mean algorithm)算法对地震信号进行去噪,该算法...由于采集环境及仪器性能的限制,采集的地震信号中含有较强的随机噪声,对后续的处理和解释带来很大困难。多尺度几何分析近年来受到关注,在Shearlet变换域中引入非局部均值(NLM,non-local mean algorithm)算法对地震信号进行去噪,该算法首先对地震信号进行非下采样Shearlet变换,对近似服从广义高斯分布的Shearlet系数进行主成分分析(PCA,principal component analysis),然后采用非局部均值处理Shearlet系数,最后对新的Shearlet系数进行Shearlet反变换,得到去噪之后的地震信号。实验结果表明,文中算法在低噪声情况下能够获得优于非局部均值算法的去噪效果,对地震信号去噪具有可行性。展开更多
由于文档纸张的几何形变、拍摄场景的干扰及拍摄角度不理想导致的透视失真,移动设备获取的文档图像的光学字符识别(Optical character recognition,OCR)性能受到很大挑战。针对折叠和扭曲的畸变文档图像预处理问题,设计了两种基于自编...由于文档纸张的几何形变、拍摄场景的干扰及拍摄角度不理想导致的透视失真,移动设备获取的文档图像的光学字符识别(Optical character recognition,OCR)性能受到很大挑战。针对折叠和扭曲的畸变文档图像预处理问题,设计了两种基于自编码器的网络结构,以实现自适应性图像矫正并提高文字识别正确率。首先提出空洞残差块和非对称卷积残差块两种残差块,然后将残差块与自编码器相结合,设计了一种非对称空洞自编码器网络;同时利用空间金字塔池化代替全连接层,并用非对称卷积残差块实现特征提取,设计了另一种空间金字塔自编码器网络。实验结果表明,与畸变图像相比,经非对称空洞自编码器网络矫正后的图像在OCR正确率、OCR召回率和文本相似度上分别提高了26.3%、20.4%和12.3%,而经空间金字塔自编码器网络矫正后的图像在正确率、召回率和文本相似度上分别提高了27.7%、22.0%和15.5%。与RectiNet等其他图像矫正网络相比,这两种网络可以自适应矫正多种类型的畸变文档图像,且矫正后的图像在文字识别上表现更为优异。本文提出的两种矫正网络能有效提高图像文字识别正确率、召回率和文本相似度,同时在鲁棒性、泛化性等方面与现有矫正网络相比具有明显的优势。展开更多
文摘负荷曲线聚类是电力大数据研究的基础,通过聚类来挖掘用户的用电模式,从而为电力调控提供决策。针对传统的聚类方法难以处理高维多变量数据,提取时间特征较困难,存在特征提取与聚类过程分离的问题,采用基于一维卷积自编码器的深度卷积嵌入聚类方法(deep convolutional embedded clustering based on one-dimensional convolution autoencoder,DCEC-1D),对负荷曲线进行聚类并提取典型负荷曲线。首先,用一维卷积自编码器(one-dimensional convolutional autoencoder,1D-CAE)提取特征,送入K-means得到初始簇中心;然后,利用自定义的聚类层对提取的负荷特征进行软分布;最后,为防止扭曲嵌入空间,将聚类损失和重构损失相结合作为损失函数联合优化,得到最终的聚类结果。算例分析以美国加州大学欧文分校(University of California Irvine,UCI)提出的数据集中的葡萄牙居民用户实际采集数据为研究对象,通过戴维森堡丁指数(Davies-Bouldin index,DBI),CH分数(Calinski-Harabaz index,CHI),轮廓系数(Silhouette coefficient,SC)这3个聚类指标进行定量分析,并通过t分布随机邻域嵌入(t-distributed stochastic neighborhood embedding,TSNE)进行可视化分析。试验结果表明,相较于传统的K-means、主成分分析法(principal components analysis,PCA)+K-means,该方法聚类指标有大幅度提升。对比基于局部结构保留的深度嵌入聚类(improved deep embedded clustering,IDEC),基于一维卷积的深度嵌入聚类(deep embedding clustering method based on one dimensional convolutional auto-encoder,DEC-1D-CAE)和1D-CAE+K-means,所提方法的DBI分别降低了约0.15、0.08和1.50,CHI提高了约19384.92、12488.48和36485.72,SC提高了约0.10、0.05和0.63。
文摘由于采集环境及仪器性能的限制,采集的地震信号中含有较强的随机噪声,对后续的处理和解释带来很大困难。多尺度几何分析近年来受到关注,在Shearlet变换域中引入非局部均值(NLM,non-local mean algorithm)算法对地震信号进行去噪,该算法首先对地震信号进行非下采样Shearlet变换,对近似服从广义高斯分布的Shearlet系数进行主成分分析(PCA,principal component analysis),然后采用非局部均值处理Shearlet系数,最后对新的Shearlet系数进行Shearlet反变换,得到去噪之后的地震信号。实验结果表明,文中算法在低噪声情况下能够获得优于非局部均值算法的去噪效果,对地震信号去噪具有可行性。
文摘由于文档纸张的几何形变、拍摄场景的干扰及拍摄角度不理想导致的透视失真,移动设备获取的文档图像的光学字符识别(Optical character recognition,OCR)性能受到很大挑战。针对折叠和扭曲的畸变文档图像预处理问题,设计了两种基于自编码器的网络结构,以实现自适应性图像矫正并提高文字识别正确率。首先提出空洞残差块和非对称卷积残差块两种残差块,然后将残差块与自编码器相结合,设计了一种非对称空洞自编码器网络;同时利用空间金字塔池化代替全连接层,并用非对称卷积残差块实现特征提取,设计了另一种空间金字塔自编码器网络。实验结果表明,与畸变图像相比,经非对称空洞自编码器网络矫正后的图像在OCR正确率、OCR召回率和文本相似度上分别提高了26.3%、20.4%和12.3%,而经空间金字塔自编码器网络矫正后的图像在正确率、召回率和文本相似度上分别提高了27.7%、22.0%和15.5%。与RectiNet等其他图像矫正网络相比,这两种网络可以自适应矫正多种类型的畸变文档图像,且矫正后的图像在文字识别上表现更为优异。本文提出的两种矫正网络能有效提高图像文字识别正确率、召回率和文本相似度,同时在鲁棒性、泛化性等方面与现有矫正网络相比具有明显的优势。