期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Super Congruences Involving Alternating Harmonic Sums
1
作者 zhongyan shen Tianxin Cai 《Advances in Pure Mathematics》 2020年第10期611-622,共12页
Let <em>p</em> be an odd prime, the harmonic congruence such as <img alt="" src="Edit_843b278d-d88a-45d3-a136-c30e6becf142.bmp" />, and many different variations and generalizatio... Let <em>p</em> be an odd prime, the harmonic congruence such as <img alt="" src="Edit_843b278d-d88a-45d3-a136-c30e6becf142.bmp" />, and many different variations and generalizations have been studied intensively. In this note, we consider the congruences involving the combination of alternating harmonic sums, <img alt="" src="Edit_e97d0c64-3683-4a75-9d26-4b371c2be41e.bmp" /> where P<em><sub>P </sub></em>denotes the set of positive integers which are prime to <em>p</em>. And we establish the combinational congruences involving alternating harmonic sums for positive integer <em>n</em>=3,4,5. 展开更多
关键词 Bernoulli Numbers Alternating Harmonic Sums CONGRUENCES Modulo Prime Powers
下载PDF
The Odd Solutions of Equations Involving Euler-Like Function
2
作者 Jiaxin Wu zhongyan shen 《Advances in Pure Mathematics》 2021年第5期440-446,共7页
<span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><spa... <span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">φ</span></span></span></span></span></span><sub>e</sub></em>(<em>n</em>) </span>is a function similar to Euler function <em><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">φ</span></span></span></span></span></em>(<em>n</em>). We discussed and obtained all the odd solutions of the equations <em style="white-space:normal;"><span style="white-space:nowrap;">φ<sub>e</sub></span></em><span style="white-space:nowrap;">(<em>xy</em>) </span><span style="white-space:nowrap;">= <em style="white-space:normal;"><span style="white-space:nowrap;">φ<sub>e</sub></span></em><span style="white-space:nowrap;"><sub></sub>(<em>x</em>)</span></span><span style="white-space:nowrap;"> + </span><span style="white-space:nowrap;">2</span><em style="white-space:normal;"><span style="white-space:nowrap;"><em style="white-space:normal;"><span style="white-space:nowrap;">φ<sub>e</sub></span></em></span></em><span style="white-space:nowrap;"><span style="white-space:nowrap;"><sub></sub>(</span></span><em style="white-space:normal;"><span style="white-space:nowrap;"><em style="white-space:normal;"><span style="white-space:nowrap;">y)</span></em></span></em>, <em style="white-space:normal;"><span style="white-space:nowrap;">φ<sub>e</sub></span></em>(<em>xy</em>) = 2<em style="white-space:normal;"><span style="white-space:nowrap;">φ<sub>e</sub></span></em><sub></sub>(<em>x</em>) + 3<em style="white-space:normal;"><span style="white-space:nowrap;"><em style="white-space:normal;"><span style="white-space:nowrap;">φ<sub>e</sub></span></em></span></em><sub></sub>(<em style="white-space:normal;"><span style="white-space:nowrap;">y) </span></em>and <em style="white-space:normal;"><sp 展开更多
关键词 Euler-Like Function Diophantine Equation Odd Solutions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部