Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity,environmental benignity,and high Clarke number characteristics.However,the limited thermodynamic...Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity,environmental benignity,and high Clarke number characteristics.However,the limited thermodynamics and kinetic properties pose major challenges for their engineering applications.Herein,we review the recent progress in improving their thermodynamics and kinetics,with an emphasis on the models and the influence of various parameters in the calculated models.Subsequently,the impact of alloying,composite,and nanocrystallization on both thermodynamics and dynamics are discussed in detail.In particular,the correlation between various modification strategies and the hydrogen capacity,dehydrogenation enthalpy and temperature,hydriding/dehydriding rates are summarized.In addition,the mechanism of hydrogen storage processes of Mg-based materials is discussed from the aspect of classical kinetic theories and microscope hydrogen transferring behavior.This review concludes with an outlook on the remaining challenge issues and prospects.展开更多
This paper introduces a new technique of fast acquiring 3D information in microscope based on integral imaging. Experimental results prove that the proposed method has advantageous properties including simple configur...This paper introduces a new technique of fast acquiring 3D information in microscope based on integral imaging. Experimental results prove that the proposed method has advantageous properties including simple configuration, no requirement of coherent light source and real-time 3D imaging information acquisition. This technique has an important prospect on optical microscopy and 3D display.展开更多
Filamentous algae blooms(FABs)have been increasing globally in recent years,and their presence can have both harmful and beneficial effects on aquatic ecosystems.As one of the most common FABs,Cladophora blooms have b...Filamentous algae blooms(FABs)have been increasing globally in recent years,and their presence can have both harmful and beneficial effects on aquatic ecosystems.As one of the most common FABs,Cladophora blooms have been reported in the lakes of the Qinghai-Tibet Plateau during the past few years.However,there have been few studies focused on how FABs impact other aquatic organisms,especially in alpine lakes since these are at the forefront of responding to global climate change.In this study,the phytoplankton communities in different regions of Qinghai Lake were profiled in different seasons using meta-barcode sequencing.The phytoplankton assemblages in areas with Cladophora blooms were compared to those without Cladophora.The phytoplankton community structure correlated with physicochemical properties including water temperature,electrical conductivity,nitrate,and the presence or absence of Cladophora blooms.The relative abundance of Bacillariophytes was found to be higher in zones with Cladophora blooms than in other regions.Significant seasonal changes in phytoplankton biomass andβdiversity were observed in zones with Cladophora blooms.Growth and microbial degradation of Cladophora can change the pH,dissolved oxygen,secchi depth,and nitrate.Together with seasonal temperature and electrical conductivity changes,Cladophora growth can significantly impact the phytoplankton biomass,community dissimilarity and assembly process.These results showed that Cladophora plays a key role in littoral aquatic ecosystem ecology.展开更多
Tumor microenvironment (TME) plays an important role in the tumorigenesis, proliferation, invasion and metastasis. Thereby developing synergistic anticancer strategies with multiple mechanisms are urgent. Copper is wi...Tumor microenvironment (TME) plays an important role in the tumorigenesis, proliferation, invasion and metastasis. Thereby developing synergistic anticancer strategies with multiple mechanisms are urgent. Copper is widely used in the treatment of tumor chemodynamic therapy (CDT) due to its excellent laser-mediated photo- Fenton-like reaction. Additionally, copper can induce cell death through cuproptosis, which is a new modality different from the known death mechanisms and has great promise in tumor treatment. Herein, we report a natural small molecules carrier-free injectable hydrogel (NCTD Gel) consisted of Cu2+-mediated self-assembled glycyrrhizic acid (GA) and norcantharidin (NCTD), which are mainly governed by coordination and hydrogen bonds. Under 808 nm laser irradiation, NCTD Gel can produce reactive oxygen species (ROS), consume glutathione (GSH) and overcome hypoxia in TME, leading to synergistically regulate TME via apoptosis, cuproptosis and anti-inflammation. In addition, NCTD Gel’s CDT display high selectivity and good biocompatibility as it relies on the weak acidity and H2O2 overexpression of TME. Notably, NCTD Gel’s components are originated from clinical agents and its preparation process is easy, green and economical, without any excipients. This study provides a new carrier-free hydrogel synergistic antitumor strategy, which has a good prospect in industrial production and clinical transformation.展开更多
基金supported by the Chongqing Special Key Project of Technology Innovation and Application Development,China(cstc2019jscx-dxwt B0029)the National Natural Science Foundation of China(51871143)+5 种基金the Science and Technology Committee of Shanghai(19010500400)the Shanghai Rising-Star Program(21QA1403200)Chongqing Research Program of Basic Research and Frontier Technology(No.cstc2019jcyj-msxm X0306)the Start-up Funds of Chongqing University(02110011044171)the Senior Talent Start-up Funds of Jiangsu University(4111310024)the Independent Research Project of State Key Laboratory of Mechanical Transmissions(SKLMT-ZZKT-2021M11)
文摘Mg-based materials are one of the most promising hydrogen storage candidates due to their high hydrogen storage capacity,environmental benignity,and high Clarke number characteristics.However,the limited thermodynamics and kinetic properties pose major challenges for their engineering applications.Herein,we review the recent progress in improving their thermodynamics and kinetics,with an emphasis on the models and the influence of various parameters in the calculated models.Subsequently,the impact of alloying,composite,and nanocrystallization on both thermodynamics and dynamics are discussed in detail.In particular,the correlation between various modification strategies and the hydrogen capacity,dehydrogenation enthalpy and temperature,hydriding/dehydriding rates are summarized.In addition,the mechanism of hydrogen storage processes of Mg-based materials is discussed from the aspect of classical kinetic theories and microscope hydrogen transferring behavior.This review concludes with an outlook on the remaining challenge issues and prospects.
基金supported by the Major Project of Chinese National Programs for Fundamental Research and Development (Grant No. 2010- CB327702)
文摘This paper introduces a new technique of fast acquiring 3D information in microscope based on integral imaging. Experimental results prove that the proposed method has advantageous properties including simple configuration, no requirement of coherent light source and real-time 3D imaging information acquisition. This technique has an important prospect on optical microscopy and 3D display.
基金the National Natural Science Foundation of China(U22A20454)the Second Tibetan Plateau Scientific Expedition and Research program(Grant No.2019QZKK0304).
文摘Filamentous algae blooms(FABs)have been increasing globally in recent years,and their presence can have both harmful and beneficial effects on aquatic ecosystems.As one of the most common FABs,Cladophora blooms have been reported in the lakes of the Qinghai-Tibet Plateau during the past few years.However,there have been few studies focused on how FABs impact other aquatic organisms,especially in alpine lakes since these are at the forefront of responding to global climate change.In this study,the phytoplankton communities in different regions of Qinghai Lake were profiled in different seasons using meta-barcode sequencing.The phytoplankton assemblages in areas with Cladophora blooms were compared to those without Cladophora.The phytoplankton community structure correlated with physicochemical properties including water temperature,electrical conductivity,nitrate,and the presence or absence of Cladophora blooms.The relative abundance of Bacillariophytes was found to be higher in zones with Cladophora blooms than in other regions.Significant seasonal changes in phytoplankton biomass andβdiversity were observed in zones with Cladophora blooms.Growth and microbial degradation of Cladophora can change the pH,dissolved oxygen,secchi depth,and nitrate.Together with seasonal temperature and electrical conductivity changes,Cladophora growth can significantly impact the phytoplankton biomass,community dissimilarity and assembly process.These results showed that Cladophora plays a key role in littoral aquatic ecosystem ecology.
基金National Natural Science Foundation of China(No.82274072)the Beijing Municipal Natural Science Foundation(No.L222015),Beijing Nova program(No.Z201100006820026)+1 种基金the Fundamental Research Funds for the Central Universities(2022-XJ-KYQD-008,China)Beijing Key Laboratory for Basic and Development Research on Chinese Medicine(Beijing,100102).
文摘Tumor microenvironment (TME) plays an important role in the tumorigenesis, proliferation, invasion and metastasis. Thereby developing synergistic anticancer strategies with multiple mechanisms are urgent. Copper is widely used in the treatment of tumor chemodynamic therapy (CDT) due to its excellent laser-mediated photo- Fenton-like reaction. Additionally, copper can induce cell death through cuproptosis, which is a new modality different from the known death mechanisms and has great promise in tumor treatment. Herein, we report a natural small molecules carrier-free injectable hydrogel (NCTD Gel) consisted of Cu2+-mediated self-assembled glycyrrhizic acid (GA) and norcantharidin (NCTD), which are mainly governed by coordination and hydrogen bonds. Under 808 nm laser irradiation, NCTD Gel can produce reactive oxygen species (ROS), consume glutathione (GSH) and overcome hypoxia in TME, leading to synergistically regulate TME via apoptosis, cuproptosis and anti-inflammation. In addition, NCTD Gel’s CDT display high selectivity and good biocompatibility as it relies on the weak acidity and H2O2 overexpression of TME. Notably, NCTD Gel’s components are originated from clinical agents and its preparation process is easy, green and economical, without any excipients. This study provides a new carrier-free hydrogel synergistic antitumor strategy, which has a good prospect in industrial production and clinical transformation.