In this paper, we present an investigation on the tracking performances of feedback control as a function of reference signals. We use multi-objective optimal designs of feedback controls as a fair basis for comparing...In this paper, we present an investigation on the tracking performances of feedback control as a function of reference signals. We use multi-objective optimal designs of feedback controls as a fair basis for comparing different control designs, and examine step, ramp, and periodic signals at various frequencies. Through comparing the tracking performances of controls designed with different reference signals,we find that the controls designed with ramp signals perform better in tracking step and ramp references than those designed with step signals. To track periodic signals, we find that the controls designed with periodic signals at the same frequency generally provide the best performance, and those designed with step and ramp signals perform comparably.展开更多
It is generally difficult to design feedback controls of nonlinear systems with time delay to meet time domain specifications such as rise time, overshoot, and tracking error. Furthermore, these time domain specificat...It is generally difficult to design feedback controls of nonlinear systems with time delay to meet time domain specifications such as rise time, overshoot, and tracking error. Furthermore, these time domain specifications tend to be conflicting to each other to make the control design even more challenging. This paper presents a cell mapping method for multi-objective optimal feedback control design in time domain for a nonlinear Duffing system with time delay. We first review the multi-objective optimization problem and its formulation for control design. We then introduce the cell mapping method and a hybrid algorithm for global optimal solutions. Numerical simulations of the PID control are presented to show the features of the multi-objective optimal design. @ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1306306]展开更多
基金Supported by the National Natural Science Foundation of China(Nos.11172197,11332008 and 11572215)the Natural Science Foundation of Tianjin through a key-project Grant(12JCZDJC30400)the UC MEXUS-CONACy T through the project Hybridizing Set Oriented Methods and Evolutionary Strategies to Obtain Fast and Reliable Multi-objective Optimization Algorithms
基金supported by the National Natural Science Foundation of China (Nos.11172197,11332008 and 11572215)a Grant from the University of California Institute for Mexico and the United States (UC MEXUS)the Consejo Nacional de Cienciay Tecnología de México (CONACYT) through the project "Hybridizing Set Oriented Methods and Evolutionary Strategies to Obtain Fast and Reliable Multi-objective Optimization Algorithms"
文摘In this paper, we present an investigation on the tracking performances of feedback control as a function of reference signals. We use multi-objective optimal designs of feedback controls as a fair basis for comparing different control designs, and examine step, ramp, and periodic signals at various frequencies. Through comparing the tracking performances of controls designed with different reference signals,we find that the controls designed with ramp signals perform better in tracking step and ramp references than those designed with step signals. To track periodic signals, we find that the controls designed with periodic signals at the same frequency generally provide the best performance, and those designed with step and ramp signals perform comparably.
基金supported by the UC MEXUSCONACyT("Cell-to-cell Mapping for Global Multi-objective Optimization")the National Natural Science Foundation of China(11172197)+1 种基金the Natural Science Foundation of Tianjin through a key-project grantsupport from CONACyT through a scholarship to pursue graduate studies at the Computer Science Department of CINVESTAV-IPN
文摘It is generally difficult to design feedback controls of nonlinear systems with time delay to meet time domain specifications such as rise time, overshoot, and tracking error. Furthermore, these time domain specifications tend to be conflicting to each other to make the control design even more challenging. This paper presents a cell mapping method for multi-objective optimal feedback control design in time domain for a nonlinear Duffing system with time delay. We first review the multi-objective optimization problem and its formulation for control design. We then introduce the cell mapping method and a hybrid algorithm for global optimal solutions. Numerical simulations of the PID control are presented to show the features of the multi-objective optimal design. @ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1306306]