Ferroelectricity of group-Ⅳ chalcogenides MX(M = Ge,Sn;X = Se,S) monolayers has been extensively investigated.However,how the ferroelectricity evolves in their one-dimensional nanotubes remains largely unclear.Employ...Ferroelectricity of group-Ⅳ chalcogenides MX(M = Ge,Sn;X = Se,S) monolayers has been extensively investigated.However,how the ferroelectricity evolves in their one-dimensional nanotubes remains largely unclear.Employing an accurate deep-learning interatomic potential of first-principles precision,we uncover a general stepwise mechanism for polarization switching in zigzag and chiral Ge S nanotubes,which has an energy barrier that is substantially lower than the one associated with the conventional one-step switching mechanism.The switching barrier(per atom) gradually decreases with increasing the number of intermediate steps and converges to a value that is almost independent of the tube diameter.In the chiral Ge S nanotubes,the switching path of polarization with chirality coupling is preferred at less intermediate steps.This study unveils novel ferroelectric switching behaviors in one-dimensional nanotubes,which is critical to coupling ferroelectricity and chirality.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.52172136,11991060,12088101,and U2230402)。
文摘Ferroelectricity of group-Ⅳ chalcogenides MX(M = Ge,Sn;X = Se,S) monolayers has been extensively investigated.However,how the ferroelectricity evolves in their one-dimensional nanotubes remains largely unclear.Employing an accurate deep-learning interatomic potential of first-principles precision,we uncover a general stepwise mechanism for polarization switching in zigzag and chiral Ge S nanotubes,which has an energy barrier that is substantially lower than the one associated with the conventional one-step switching mechanism.The switching barrier(per atom) gradually decreases with increasing the number of intermediate steps and converges to a value that is almost independent of the tube diameter.In the chiral Ge S nanotubes,the switching path of polarization with chirality coupling is preferred at less intermediate steps.This study unveils novel ferroelectric switching behaviors in one-dimensional nanotubes,which is critical to coupling ferroelectricity and chirality.