The high-temperature performance of 4H-SiC ultraviolet avalanche photodiodes(APDs)in both linear and Geiger modes is extensively investigated.During the temperature-dependent measurements,a fixed bias voltage is adopt...The high-temperature performance of 4H-SiC ultraviolet avalanche photodiodes(APDs)in both linear and Geiger modes is extensively investigated.During the temperature-dependent measurements,a fixed bias voltage is adopted for the device samples,which is much more practical and important for high-temperature applications.The results show that the fabricated 4H-SiC APDs are very stable and reliable at high temperatures.As the temperature increases from room temperature to 425 K,the dark current at 95%of the breakdown voltage increases slightly and remains lower than40 pA.In Geiger mode,our 4H-SiC APDs can be self-quenched in a passive-quenching circuit,which is expected for highspeed detection systems.Moreover,an interesting phenomenon is observed for the first time:the single-photon detection efficiency shows a non-monotonic variation as a function of temperature.The physical mechanism of the variation in hightemperature performance is further analyzed.The results in this work can provide a fundamental reference for researchers in the field of 4H-SiC APD ultraviolet detectors.展开更多
基金the National Natural Science Foundation of China(Grant No.61974134)Hebei Province Outstanding Youth Fund(Grant No.F2021516001).
文摘The high-temperature performance of 4H-SiC ultraviolet avalanche photodiodes(APDs)in both linear and Geiger modes is extensively investigated.During the temperature-dependent measurements,a fixed bias voltage is adopted for the device samples,which is much more practical and important for high-temperature applications.The results show that the fabricated 4H-SiC APDs are very stable and reliable at high temperatures.As the temperature increases from room temperature to 425 K,the dark current at 95%of the breakdown voltage increases slightly and remains lower than40 pA.In Geiger mode,our 4H-SiC APDs can be self-quenched in a passive-quenching circuit,which is expected for highspeed detection systems.Moreover,an interesting phenomenon is observed for the first time:the single-photon detection efficiency shows a non-monotonic variation as a function of temperature.The physical mechanism of the variation in hightemperature performance is further analyzed.The results in this work can provide a fundamental reference for researchers in the field of 4H-SiC APD ultraviolet detectors.