Soil phosphorus (P) plays a vital role in both ecological and agricultural ecosystems, where total P (TP) in soil serves as a crucial indicator of soil fertility and quality. Most of the studies covered in the literat...Soil phosphorus (P) plays a vital role in both ecological and agricultural ecosystems, where total P (TP) in soil serves as a crucial indicator of soil fertility and quality. Most of the studies covered in the literature employ a single or narrow range of soil databases, which largely overlooks the impact of utilizing multiple mapping scales in estimating soil TP, especially in hilly topographies. In this study, Fujian Province, a subtropical hilly region along China’s southeast coast covered by a complex topographic environment, was taken as a case study. The influence of the mapping scale on soil TP storage (TPS)estimation was analyzed using six digital soil databases that were derived from 3 082 unique soil profiles at different mapping scales, i.e., 1:50 000 (S5),1:200 000 (S20), 1:500 000 (S50), 1:1 000 000 (S100), 1:4 000 000 (S400), and 1:10 000 000 (S1000). The regional TPS in the surface soil (0–20 cm) based on the S5, S20, S50, S100, S400, and S1000 soil maps was 20.72, 22.17, 23.06, 23.05, 22.04, and 23.48 Tg, respectively, and the corresponding TPS at0–100 cm soil depth was 80.98, 80.71, 85.00, 84.03, 82.96, and 86.72 Tg, respectively. By comparing soil TPS in the S20 to S1000 maps to that in the S5map, the relative deviations were 6.37%–13.32%for 0–20 cm and 0.33%–7.09%for 0–100 cm. Moreover, since the S20 map had the lowest relative deviation among different mapping scales as compared to S5, it could provide additional soil information and a richer soil environment than other smaller mapping scales. Our results also revealed that many uncertainties in soil TPS estimation originated from the lack of detailed soil information, i.e., representation and spatial variations among different soil types. From the time and labor perspectives, our work provides useful guidelines to identify the appropriate mapping scale for estimating regional soil TPS in areas like Fujian Province in subtropical China or other places with similar complex topographies. Moreover, it is of tremendous importance to 展开更多
Forage supply has been stressed due to the rapid increase in China's livestock consumption.However,the long-term dynamics of the relationships between forage demand and multi-sourced supply are not understood.Here...Forage supply has been stressed due to the rapid increase in China's livestock consumption.However,the long-term dynamics of the relationships between forage demand and multi-sourced supply are not understood.Here,we examine the annual forage demand,or practical carrying capacity(PCC),and supply,or theoretical carrying capacity(TCC)from 2000 to 2019 in China.We construct a forage supply-demand index(FSDI)to represent the forage supply pressure using MODIS-derived net primary productivity products and provincial statistical datasets,and we consider two scenarios.First,natural grasslands are the sole source of forage.Second,natural grassland forage supply is supplemented with straw crops.We find an increase in PCC in northwestern China's major pastoral and agropastoral provincial regions,including Inner Mongolia,Gansu,Ningxia and Qinghai,at rate of 0.24-3.59 million sheep units(SU)a year.As the primary source of forage,the theoretical carrying capacity of natural grasslands(TCCgrass)expanded at a rate of 3 million SU/yr nationally.Crop straws fed 126.58 million SU nationally in 2019,which accounted for 11.3%of the total practical carrying capacity and alleviated the forage supply pressure by reducing FSDI by 26.56%.During 2000–2019,the theoretical carrying capacity of straw crops(TCCcrop)increased rapidly from 76.5 million SU to 126.6 million SU,which accounted for 10%-15%of the total forage supply at the national scale.We also discovered large carrying capacity gaps(TCCgap)in the northwestern pastoral provincial regions of Inner Mongolia,Xinjiang,Gansu,and some agricultural provinces such as Shandong and Henan,when we considered forage supply from both natural grasslands and straw crops.Our findings showed a large forage gap in the traditional pastoral regions,and we also discussed green fodder as a potential solution for balancing the supply of and demand for forage,which may shed light on crop and forage planning.展开更多
Grasslands are one of the major biomes on Earth,covering approximately 25%of the terrestrial planet.Human history is deeply intertwined with grassland biomes,where we,as a natural species,first walked upright 2 millio...Grasslands are one of the major biomes on Earth,covering approximately 25%of the terrestrial planet.Human history is deeply intertwined with grassland biomes,where we,as a natural species,first walked upright 2 million years ago.Today,grassland ecosystems continue to play an important role in people's livelihoods by producing meat and dairy products,providing habitats for biodiversity,and delivering essential ecosystem services such as climate regulation and cultural heritage.展开更多
基金supported by the National Natural Science Foundation of China(Nos.41971050 and 42207271)the Provincial Natural Science Foundation of Fujian,China(No.2022J05036)the Open Project Program of the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics,Chinese Academy of Sciences(No.LAPC-KF-2022-08)。
文摘Soil phosphorus (P) plays a vital role in both ecological and agricultural ecosystems, where total P (TP) in soil serves as a crucial indicator of soil fertility and quality. Most of the studies covered in the literature employ a single or narrow range of soil databases, which largely overlooks the impact of utilizing multiple mapping scales in estimating soil TP, especially in hilly topographies. In this study, Fujian Province, a subtropical hilly region along China’s southeast coast covered by a complex topographic environment, was taken as a case study. The influence of the mapping scale on soil TP storage (TPS)estimation was analyzed using six digital soil databases that were derived from 3 082 unique soil profiles at different mapping scales, i.e., 1:50 000 (S5),1:200 000 (S20), 1:500 000 (S50), 1:1 000 000 (S100), 1:4 000 000 (S400), and 1:10 000 000 (S1000). The regional TPS in the surface soil (0–20 cm) based on the S5, S20, S50, S100, S400, and S1000 soil maps was 20.72, 22.17, 23.06, 23.05, 22.04, and 23.48 Tg, respectively, and the corresponding TPS at0–100 cm soil depth was 80.98, 80.71, 85.00, 84.03, 82.96, and 86.72 Tg, respectively. By comparing soil TPS in the S20 to S1000 maps to that in the S5map, the relative deviations were 6.37%–13.32%for 0–20 cm and 0.33%–7.09%for 0–100 cm. Moreover, since the S20 map had the lowest relative deviation among different mapping scales as compared to S5, it could provide additional soil information and a richer soil environment than other smaller mapping scales. Our results also revealed that many uncertainties in soil TPS estimation originated from the lack of detailed soil information, i.e., representation and spatial variations among different soil types. From the time and labor perspectives, our work provides useful guidelines to identify the appropriate mapping scale for estimating regional soil TPS in areas like Fujian Province in subtropical China or other places with similar complex topographies. Moreover, it is of tremendous importance to
基金supported by the Strategic Priority Research Program (XDA26010202,XDA28060100)of Chinese Academy of Sciences (CAS)the CAS Youth Interdisciplinary Team Project (JCTD-2021-04)the Second Tibetan Plateau of Scientific Expedition and Research Program (2019QZKK0608).
文摘Forage supply has been stressed due to the rapid increase in China's livestock consumption.However,the long-term dynamics of the relationships between forage demand and multi-sourced supply are not understood.Here,we examine the annual forage demand,or practical carrying capacity(PCC),and supply,or theoretical carrying capacity(TCC)from 2000 to 2019 in China.We construct a forage supply-demand index(FSDI)to represent the forage supply pressure using MODIS-derived net primary productivity products and provincial statistical datasets,and we consider two scenarios.First,natural grasslands are the sole source of forage.Second,natural grassland forage supply is supplemented with straw crops.We find an increase in PCC in northwestern China's major pastoral and agropastoral provincial regions,including Inner Mongolia,Gansu,Ningxia and Qinghai,at rate of 0.24-3.59 million sheep units(SU)a year.As the primary source of forage,the theoretical carrying capacity of natural grasslands(TCCgrass)expanded at a rate of 3 million SU/yr nationally.Crop straws fed 126.58 million SU nationally in 2019,which accounted for 11.3%of the total practical carrying capacity and alleviated the forage supply pressure by reducing FSDI by 26.56%.During 2000–2019,the theoretical carrying capacity of straw crops(TCCcrop)increased rapidly from 76.5 million SU to 126.6 million SU,which accounted for 10%-15%of the total forage supply at the national scale.We also discovered large carrying capacity gaps(TCCgap)in the northwestern pastoral provincial regions of Inner Mongolia,Xinjiang,Gansu,and some agricultural provinces such as Shandong and Henan,when we considered forage supply from both natural grasslands and straw crops.Our findings showed a large forage gap in the traditional pastoral regions,and we also discussed green fodder as a potential solution for balancing the supply of and demand for forage,which may shed light on crop and forage planning.
文摘Grasslands are one of the major biomes on Earth,covering approximately 25%of the terrestrial planet.Human history is deeply intertwined with grassland biomes,where we,as a natural species,first walked upright 2 million years ago.Today,grassland ecosystems continue to play an important role in people's livelihoods by producing meat and dairy products,providing habitats for biodiversity,and delivering essential ecosystem services such as climate regulation and cultural heritage.