African swine fever(ASF)is etiologically an acute,highly contagious and hemorrhagic disease caused by African swine fever virus(ASFV).Due to its genetic variation and phenotypic diversity,until now,no efficient commer...African swine fever(ASF)is etiologically an acute,highly contagious and hemorrhagic disease caused by African swine fever virus(ASFV).Due to its genetic variation and phenotypic diversity,until now,no efficient commercial vaccines or therapeutic options are available.The ASFV genome contains a conserved middle region and two flexible ends that code for five multigene families(MGFs),while the biological functions of the MGFs are not fully characterized.Here,ASFV MGF505-2R-deficient mutant ASFV-Δ2R was constructed based on a highly virulent genotype II field isolate ASFV CN/GS/2018 currently circulating in China.Transcriptomic profiling demonstrated that ASFV-Δ2R was capable of inducing a larger number of differentially expressed genes(DEGs)compared with ASFV CN/GS/2018.Hierarchical clustering of up-regulated DEGs revealed that ASFV-Δ2R induced the most dramatic expression of interferon-related genes and inflammatory and innate immune genes,as further validated by RT-qPCR.The GO and KEGG pathway analysis identified significantly enriched pathways involved in pathogen recognition and innate antiviral immunity.Conversely,pharmacological activation of those antiviral immune responses by exogenous cytokines,including type I/II IFNs,TNF-αand IL-1β,exerted combinatory effects and synergized in antiviral capacity against ASFV replication.Collectively,MGF505-2R is a newly identified inhibitor of innate immunity potentially implicated in immune evasion.展开更多
难熔高熵合金因其优异的高温屈服强度和抗软化性能而备受关注.然而,室温延展性差和较高的密度目前仍然是其加工以及应用需要面临的主要挑战.本文利用材料的固有特性作为合金设计原则,通过调控Mo浓度,制备了三种新型单相体心立方结构的Ti...难熔高熵合金因其优异的高温屈服强度和抗软化性能而备受关注.然而,室温延展性差和较高的密度目前仍然是其加工以及应用需要面临的主要挑战.本文利用材料的固有特性作为合金设计原则,通过调控Mo浓度,制备了三种新型单相体心立方结构的Ti3Zr1.5Nb((1-x))-MoxVAl_(0.25)(x=0.1,0.3,0.5,标记为Mo0.1,Mo0.3和Mo0.5)合金,这些合金都具有良好的拉伸延展性和低于6 g cm^(-3)的密度.高剪切模量Mo元素的引入促进了晶格畸变,从而提高了合金中的晶格摩擦应力以及屈服强度.铸态Mo0.3和Mo0.5合金均表现出超过1100 MPa的拉伸屈服强度,以及大于15%的断裂延伸率.Labusch模型计算结果表明,原子尺寸和剪切模量失配引起的固溶强化对屈服强度的影响最为显著.通过观察变形微观组织发现,由于存在高密度的位错界面,扭折带、位错壁以及泰勒晶格的形成能有效提高合金的应变硬化能力,使合金在展现高强度的同时保持足够的延展性.该研究为开发具有高强韧的单相难熔高熵合金提供了新的见解.展开更多
基金supported by grants from the National Key R&D Program of China(2021YFD1801300)the Key-Area Research and Development Program of Guangdong Province(grant number 2019B020211003)+2 种基金the Chinese Academy of Agricultural Science and Technology Innovation Project(grants number CAAS-ZDRW202006 and CAAS-ASTIP-2021-LVRI)Technology Major Projects of Gansu Province(20ZD7A006 and NCC0006)as well as funding from the director of Lanzhou Veterinary Research Institute(LVRI-SZJJ-202106).
文摘African swine fever(ASF)is etiologically an acute,highly contagious and hemorrhagic disease caused by African swine fever virus(ASFV).Due to its genetic variation and phenotypic diversity,until now,no efficient commercial vaccines or therapeutic options are available.The ASFV genome contains a conserved middle region and two flexible ends that code for five multigene families(MGFs),while the biological functions of the MGFs are not fully characterized.Here,ASFV MGF505-2R-deficient mutant ASFV-Δ2R was constructed based on a highly virulent genotype II field isolate ASFV CN/GS/2018 currently circulating in China.Transcriptomic profiling demonstrated that ASFV-Δ2R was capable of inducing a larger number of differentially expressed genes(DEGs)compared with ASFV CN/GS/2018.Hierarchical clustering of up-regulated DEGs revealed that ASFV-Δ2R induced the most dramatic expression of interferon-related genes and inflammatory and innate immune genes,as further validated by RT-qPCR.The GO and KEGG pathway analysis identified significantly enriched pathways involved in pathogen recognition and innate antiviral immunity.Conversely,pharmacological activation of those antiviral immune responses by exogenous cytokines,including type I/II IFNs,TNF-αand IL-1β,exerted combinatory effects and synergized in antiviral capacity against ASFV replication.Collectively,MGF505-2R is a newly identified inhibitor of innate immunity potentially implicated in immune evasion.
基金supported by the National Natural Science Foundation of China (52074257)Chinese Academy of Sciences (ZDBS-LY-JSC023)。
文摘难熔高熵合金因其优异的高温屈服强度和抗软化性能而备受关注.然而,室温延展性差和较高的密度目前仍然是其加工以及应用需要面临的主要挑战.本文利用材料的固有特性作为合金设计原则,通过调控Mo浓度,制备了三种新型单相体心立方结构的Ti3Zr1.5Nb((1-x))-MoxVAl_(0.25)(x=0.1,0.3,0.5,标记为Mo0.1,Mo0.3和Mo0.5)合金,这些合金都具有良好的拉伸延展性和低于6 g cm^(-3)的密度.高剪切模量Mo元素的引入促进了晶格畸变,从而提高了合金中的晶格摩擦应力以及屈服强度.铸态Mo0.3和Mo0.5合金均表现出超过1100 MPa的拉伸屈服强度,以及大于15%的断裂延伸率.Labusch模型计算结果表明,原子尺寸和剪切模量失配引起的固溶强化对屈服强度的影响最为显著.通过观察变形微观组织发现,由于存在高密度的位错界面,扭折带、位错壁以及泰勒晶格的形成能有效提高合金的应变硬化能力,使合金在展现高强度的同时保持足够的延展性.该研究为开发具有高强韧的单相难熔高熵合金提供了新的见解.