Nonpolar(11–20) a-plane p-type GaN films were successfully grown on r-plane sapphire substrate with the metal–organic chemical vapor deposition(MOCVD) system. The effects of Mg-doping temperature on the structural a...Nonpolar(11–20) a-plane p-type GaN films were successfully grown on r-plane sapphire substrate with the metal–organic chemical vapor deposition(MOCVD) system. The effects of Mg-doping temperature on the structural and electrical properties of nonpolar p-type GaN films were investigated in detail. It is found that all the surface morphology, crystalline quality, strains, and electrical properties of nonpolar a-plane p-type GaN films are interconnected, and are closely related to the Mg-doping temperature. This means that a proper performance of nonpolar p-type GaN can be expected by optimizing the Mg-doping temperature. In fact, a hole concentration of 1.3×10^(18)cm^(-3), a high Mg activation efficiency of 6.5%,an activation energy of 114 me V for Mg acceptor, and a low anisotropy of 8.3% in crystalline quality were achieved with a growth temperature of 990℃. This approach to optimizing the Mg-doping temperature of the nonpolar a-plane p-type GaN film provides an effective way to fabricate high-efficiency optoelectronic devices in the future.展开更多
This paper is concerned with the routing protocol design for large-scale wireless sensor and actor networks (WSANs).The actor-sensor-actor communication (ASAC) strategy is first proposed to guarantee the reliability o...This paper is concerned with the routing protocol design for large-scale wireless sensor and actor networks (WSANs).The actor-sensor-actor communication (ASAC) strategy is first proposed to guarantee the reliability of persistent actor-actor communication.To keep network connectivity and prolong network lifetime,we propose a dynamic gradient-based routing protocol (DGR) to balance the energy consumption of the network.With the different communication ranges of sensors and actors,the DGR protocol uses a data load expansion strategy to significantly prolong the network lifetime.The balance coefficient and the routing re-establishment threshold are also introduced to make the tradeoff between network lifetime and routing efficiency.Simulation results show the effectiveness of the proposed DGR protocol for unbalanced and persistent data transmission.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2021YFB3601000 and 2021YFB3601002)the National Natural Science Foundation of China (Grant Nos.62074077,61921005,61974062,62204121,and 61904082)+1 种基金Leading-edge Technology Program of Jiangsu Natural Science Foundation (Grant No.BE2021008-2)the China Postdoctoral Science Foundation (Grant No.2020M671441)。
文摘Nonpolar(11–20) a-plane p-type GaN films were successfully grown on r-plane sapphire substrate with the metal–organic chemical vapor deposition(MOCVD) system. The effects of Mg-doping temperature on the structural and electrical properties of nonpolar p-type GaN films were investigated in detail. It is found that all the surface morphology, crystalline quality, strains, and electrical properties of nonpolar a-plane p-type GaN films are interconnected, and are closely related to the Mg-doping temperature. This means that a proper performance of nonpolar p-type GaN can be expected by optimizing the Mg-doping temperature. In fact, a hole concentration of 1.3×10^(18)cm^(-3), a high Mg activation efficiency of 6.5%,an activation energy of 114 me V for Mg acceptor, and a low anisotropy of 8.3% in crystalline quality were achieved with a growth temperature of 990℃. This approach to optimizing the Mg-doping temperature of the nonpolar a-plane p-type GaN film provides an effective way to fabricate high-efficiency optoelectronic devices in the future.
基金supported by the National Natural Science Foundation of China (Nos.60934003 and 60974123)the National Basic Research Program (973) of China (No.2010CB731800)the Science and Technology Commission of Shanghai Municipality,China (Nos.09PJ1406100,10XD1402100,and 09CG06)
文摘This paper is concerned with the routing protocol design for large-scale wireless sensor and actor networks (WSANs).The actor-sensor-actor communication (ASAC) strategy is first proposed to guarantee the reliability of persistent actor-actor communication.To keep network connectivity and prolong network lifetime,we propose a dynamic gradient-based routing protocol (DGR) to balance the energy consumption of the network.With the different communication ranges of sensors and actors,the DGR protocol uses a data load expansion strategy to significantly prolong the network lifetime.The balance coefficient and the routing re-establishment threshold are also introduced to make the tradeoff between network lifetime and routing efficiency.Simulation results show the effectiveness of the proposed DGR protocol for unbalanced and persistent data transmission.