Vibration acceleration signals are often measured from case surface of arunning machine to monitor its condition. If the measured vibration signals display to have periodicimpulse components with a certain frequency, ...Vibration acceleration signals are often measured from case surface of arunning machine to monitor its condition. If the measured vibration signals display to have periodicimpulse components with a certain frequency, there may exist a corresponding local fault in themachine, and if further extracting the periodic impulse components from the vibration signals, theseverity of the local fault can be estimated and tracked. However, the signal-to-noise ratios (SNRs)of the vibration acceleration signals are often so small that the periodic impulse components aresubmersed in much background noises and other components, and it is difficult or inconvenient for usto detect and extract the periodic impulse components with the current common analyzing methods forvibration signals. Therefore, another technique, called singular value decomposition (SVD), istried to be introduced to solve the problem. First, the principle of detecting and extracting thesignal periodic components using singular value decomposition is summarized and discussed. Second,the infeasibility of the direct use of the existing SVD based detecting and extracting approach ispointed out. Third, the approach to construct the matrix for SVD from the signal series is improvedlargely, which is the key program to improve the SVD technique; Other associated improvement is alsoproposed. Finally, a simulating application example and a real-life application example ondetecting and extracting the periodic impulse components are given, which showed that the introducedand improved SVD technique is feasible.展开更多
Recently,the development and application of lane line departure warning systems have been in the market.For any of the systems,the key part of lane line tracking,lane line identification,or lane line departure warning...Recently,the development and application of lane line departure warning systems have been in the market.For any of the systems,the key part of lane line tracking,lane line identification,or lane line departure warning is whether it can accurately and quickly detect lane lines.Since 1990 s,they have been studied and implemented for the situations defined by the good viewing conditions and the clear lane markings on road.After then,the accuracy for particular situations,the robustness for a wide range of scenarios,time efficiency and integration into higher-order tasks define visual lane line detection and tracking as a continuing research subject.At present,these kinds of lane marking line detection methods based on machine vision and image processing can be divided into two categories:the traditional image processing and semantic segmentation(includes deep learning)methods.The former mainly involves feature-based and model-based steps,and which can be classified into similarity-and discontinuity-based ones;and the model-based step includes different parametric straight line,curve or pattern models.The semantic segmentation includes different machine learning,neural network and deep learning methods,which is the new trend for the research and application of lane line departure warning systems.This paper describes and analyzes the lane line departure warning systems,image processing algorithms and semantic segmentation methods for lane line detection.展开更多
Understanding the net primary productivity(NPP) of grassland is crucial to evaluate the terrestrial carbon cycle. In this study, we investigated the spatial distribution and the area of global grassland across the glo...Understanding the net primary productivity(NPP) of grassland is crucial to evaluate the terrestrial carbon cycle. In this study, we investigated the spatial distribution and the area of global grassland across the globe. Then, we used the Carnegie-Ames-Stanford Approach(CASA) model to estimate global grassland NPP and explore the spatio-temporal variations of grassland NPP in response to climate change from 1982 to 2008. Results showed that the largest area of grassland distribution during the study period was in Asia(1737.23 × 104 km^2), while the grassland area in Europe was relatively small(202.83 × 10~4 km^2). Temporally, the total NPP increased with fluctuations from 1982 to 2008, with an annual increase rate of 0.03 Pg C/yr. The total NPP experienced a significant increasing trend from 1982 to 1995, while a decreasing trend was observed from 1996 to 2008. Spatially, the grassland NPP in South America and Africa were higher than the other regions, largely as a result of these regions are under warm and wet climatic conditions. The highest mean NPP was recorded for savannas(560.10 g C/(m^2·yr)), whereas the lowest was observed in open shrublands with an average NPP of 162.53 g C/(m^2·yr). The relationship between grassland NPP and annual mean temperature and annual precipitation(AMT, AP, respectively) varies with changes in AP, which indicates that, grassland NPP is more sensitive to precipitation than temperature.展开更多
The first Asia-Pacific Comparison of Absolute Gravimeters(APMP.M.G-K1) was organized by the National Institute of Metrology(NIM) of China from December 21, 2015 to March 25, 2016 in Changping, Beijing. Our compact col...The first Asia-Pacific Comparison of Absolute Gravimeters(APMP.M.G-K1) was organized by the National Institute of Metrology(NIM) of China from December 21, 2015 to March 25, 2016 in Changping, Beijing. Our compact cold atom gravimeter(CCAG) was transported from Hangzhou to Beijing with a long distance of about1200 km to participate in this comparison. The CCAG is the only one, to the best of our knowledge, that is based on the principle of atom interferometry among all the instruments. Absolute gravity in the indicated three test sites has been measured as requested by the organizer. The sensitivity of our CCAG is estimated to be90 μGal∕Hz p, even when the measurements are carried out without any vibration isolation. Besides, the accuracy of this gravimeter has been evaluated to be about 19 μGal by considering the significant system errors.Our results show a good agreement with the given reference value.展开更多
Background Myocarditis is a common,potentially life-threatening disease that presents a wide rang of symptoms in children,as an important underlying etiology of other myocardial diseases such as dilated and arrhythmog...Background Myocarditis is a common,potentially life-threatening disease that presents a wide rang of symptoms in children,as an important underlying etiology of other myocardial diseases such as dilated and arrhythmogenic right ventricular cardiomyopathy.The incidence of nonfatal myocarditis is probably greater than that of the one actually diagnosed,which is the result of the challenges of establishing the diagnosis in standard clinical settings.Currently,no single clinical or imaging finding confirms the diagnosis of myocarditis with absolute certainty.Historically,clinical exam,electrocardiogram (ECG),serology and echocardiography had an unsatisfactory diagnostic accuracy in myocarditis.Endomyocardial biopsy remains as a widely accepted standard,but may not be suitable for every patient,especially for those with less severe disease.Our aim was to find the changes in cardiovascular magnetic resonance (CMR) imaging of children with myocarditis diagnosed by clinical criteria.Methods We studied 25 children (18 male,7 female; aged from 5-17 years) with diagnosed myocarditis by clinical criteria.CMR included function analyses,T2-weighted imaging,T1-weighted imaging before and after i.v.gadolinium injection (early gadolinium enhancement (EGE) and late gadolinium enhancement (LGE)).Results The T2 ratio was elevated in 21 children (84%,11 in anterolateral (44%),5 in inferolateral (20%),and 5 in septum (20%)),EGE was present in 9 children (36%,3 in anterolateral (12%),4 in inferolateral (20%),and 2 in septum (8%)),and LGE was present in 5 children (20%,2 in anterolateral (8%),1 in inferolateral (4%),1 in septum (4%),and 1 in midwall of left ventricular (LV) wall).In 9 children (36%),two (or more) out of three sequences (T2,EGE,LGE) were abnormal.Conclusions The CMR findings in children with clinically diagnosed myocarditis vary within the groups,including regional or global myocardial signal increase in T2-w展开更多
A formal analysis to footprint problem with effects of angle of attack (AOA) is presented. First a flexible and rapid standardized method for footprint generation is developed. Zero bank angle control strategy and t...A formal analysis to footprint problem with effects of angle of attack (AOA) is presented. First a flexible and rapid standardized method for footprint generation is developed. Zero bank angle control strategy and the maximum crossrange method are used to obtain virtual target set; afterward, closed-loop bank angle guidance law is used to find footprint by solving closest approach problem for each element in virtual target set. Then based on quasi-equilibrium glide condition, the typical inequality reentry trajectory constraints are converted to angle of attack lower boundary constraint. Constrained by the lower boundary, an original and practical angle of attack parametric method is proposed. By using parametric angle of attack profile, optimization algorithm for angle of attack is designed and the impact of angle of attack to footprint is discussed. Simulations with different angle of attack profiles are presented to demonstrate the performance of the proposed footprint solution method and validity of optimal algorithm.展开更多
A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with...A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.展开更多
Polyetherketoneketone(PEKK)exhibits admirable biocompatibility and mechanical performances but bioinert while tantalum(Ta)possesses excellent osteogenesis and osseointegration but high elastic modulus and density,and ...Polyetherketoneketone(PEKK)exhibits admirable biocompatibility and mechanical performances but bioinert while tantalum(Ta)possesses excellent osteogenesis and osseointegration but high elastic modulus and density,and processing is too difficult and expensive.In the present study,combining of the advantages of both PEKK and Ta,implantable composites of PEKK/Ta were fabricated by blending PEKK with Ta microparticles of 20 v%(PT20)and 40 v%(PT40)content.In comparison with PT20 and PEKK,the surface hydrophilicity,surface energy,roughness and proteins adsorption as well as mechanical performances of PT40 significantly increased because of the higher Ta particles content in PEKK.Furthermore,PT40 exhibited the mechanical performances(e.g.,compressive strength and modulus of elasticity)close to the cortical bone of human.Compared with PT20 and PEKK,PT40 with higher Ta content remarkably enhanced the responses(including adhesion,proliferation and osteogenic differentiation)of MC3T3-E1 cells in vitro.Moreover,PT40 markedly improved bone formation as well as osseointegration in vivo.In short,incorporation of Ta microparticles into PEKK created implantable composites with improved surface performances,which played key roles in stimulating cell responses/bone formation as well as promoting osseointegration.PT40 might have great potential for bear-loading bone substitute.展开更多
Gelsemium elegans(G.elegans)(2 n=2 x=16)is genus of flowering plants belonging to the Gelsemicaeae family.Here,a high-quality genome assembly using the Oxford Nanopore Technologies(ONT)platform and high-throughput chr...Gelsemium elegans(G.elegans)(2 n=2 x=16)is genus of flowering plants belonging to the Gelsemicaeae family.Here,a high-quality genome assembly using the Oxford Nanopore Technologies(ONT)platform and high-throughput chromosome conformation capture techniques(Hi-C)were used.A total of 56.11 Gb of raw GridION X5 platform ONT reads(6.23 Gb per cell)were generated.After filtering,53.45 Gb of clean reads were obtained,giving 160 x coverage depth.The de novo genome assemblies 335.13 Mb,close to the 338 Mb estimated by k-mer analysis,was generated with contig N50 of 10.23 Mb.The vast majority(99.2%)of the G.elegans assembled sequence was anchored onto 8 pseudo-chromosomes.The genome completeness was then evaluated and 1338 of the 1440 conserved genes(92.9%)could be found in the assembly.Genome annotation revealed that 43.16%of the G.elegans genome is composed of repetitive elements and 23.9%is composed of long terminal repeat elements.We predicted 26,768 protein-coding genes,of which 84.56%were functionally annotated.The genomic sequences of G.elegans could be a valuable source for comparative genomic analysis in the Gelsemicaeae family and will be useful for understanding the phylogenetic relationships of the indole alkaloid metabolism.展开更多
In this paper,we present the experiment and the theory scheme of light-atom interaction in atomic magnetometers by using a hybrid Poincarébeam(HPB)to solve an annoying problem,named“dead zone.”This kind of magn...In this paper,we present the experiment and the theory scheme of light-atom interaction in atomic magnetometers by using a hybrid Poincarébeam(HPB)to solve an annoying problem,named“dead zone.”This kind of magnetometer can be sensitive to arbitrary directions of external magnetic fields.The HPB has a complex polarization distribution,consisting of a vector radially polarized beam and a scalar circularly polarized beam in our experiment.These two kinds of beams have different directions of dead zones of external magnetic fields;thereby,the atomic magnetometer with an HPB can avoid the non-signal area when the direction of the external magnetic field is in the plane perpendicular to the light polarization plane.Furthermore,the optical magnetic resonance(OMR)signal using an HPB still has no dead zones even when the direction of the external magnetic field is in the plane parallel to the polarization plane in our scheme.Our work has the potential to simplify and optimize dead-zone-free atomic magnetometers.展开更多
Background:Inhibitor of NF-κB kinase-interacting protein(IKIP)is known to promote proliferation of glioblastoma(GBM)cells,but how it affects migration and invasion by those cells is unclear.Methods:We compared levels...Background:Inhibitor of NF-κB kinase-interacting protein(IKIP)is known to promote proliferation of glioblastoma(GBM)cells,but how it affects migration and invasion by those cells is unclear.Methods:We compared levels of IKIP between glioma tissues and normal brain tissue in clinical samples and public databases.We examined the effects of IKIP overexpression and knockdown on the migration and invasion of GBM using transwell and wound healing assays,and we compared the transcriptomes under these different conditions to identify the molecular mechanisms involved.Results:Based on data from our clinical samples and from public databases,IKIP was overexpressed in GBM tumors,and its expression level correlated inversely with survival.IKIP overexpression in GBM cells inhibited migration and invasion in transwell and wound healing assays,whereas IKIP knockdown exerted the opposite effects.IKIP overexpression in GBM cells that were injected into mouse brain promoted tumor growth but inhibited tumor invasion of surrounding tissue.The effects of IKIP were associated with downregulation of THBS1 mRNA and concomitant inhibition of THBS1/FAK signaling.Conclusions:IKIP inhibits THBS1/FAK signaling to suppress migration and invasion of GBM cells.展开更多
Auditory neuropathy spectrum disorder(ANSD)represents a variety of sensorineural deafness conditions characterized by abnormal inner hair cells and/or auditory nerve function,but with the preservation of outer hair ce...Auditory neuropathy spectrum disorder(ANSD)represents a variety of sensorineural deafness conditions characterized by abnormal inner hair cells and/or auditory nerve function,but with the preservation of outer hair cell function.ANSD represents up to 15%of individuals with hearing impairments.Through mutation screening,bioinformatic analysis and expression studies,we have previously identified several apoptosis-inducing factor(AIF)mitochondria-associated 1(AIFM1)variants in ANSD families and in some other sporadic cases.Here,to elucidate the pathogenic mechanisms underlying each AIFM1 variant,we generated AIF-null cells using the clustered regularly interspersed short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)system and constructed AIF-wild type(WT)and AIF-mutant(mut)(p.T260A,p.R422W,and p.R451Q)stable transfection cell lines.We then analyzed AIF structure,coenzyme-binding affinity,apoptosis,and other aspects.Results revealed that these variants resulted in impaired dimerization,compromising AIF function.The reduction reaction of AIF variants had proceeded slower than that of AIF-WT.The average levels of AIF dimerization in AIF variant cells were only 34.5%-49.7%of that of AIF-WT cells,resulting in caspase-independent apoptosis.The average percentage of apoptotic cells in the variants was 12.3%-17.9%,which was significantly higher than that(6.9%-7.4%)in controls.However,nicotinamide adenine dinucleotide(NADH)treatment promoted the reduction of apoptosis by rescuing AIF dimerization in AIF variant cells.Our findings show that the impairment of AIF dimerization by AIFM1 variants causes apoptosis contributing to ANSD,and introduce NADH as a potential drug for ANSD treatment.Our results help elucidate the mechanisms of ANSD and may lead to the provision of novel therapies.展开更多
To reduce the transmission latency and mitigate the backhaul burden of the centralized cloud-based network services,the mobile edge computing(MEC)has been drawing increased attention from both industry and academia re...To reduce the transmission latency and mitigate the backhaul burden of the centralized cloud-based network services,the mobile edge computing(MEC)has been drawing increased attention from both industry and academia recently.This paper focuses on mobile users’computation offloading problem in wireless cellular networks with mobile edge computing for the purpose of optimizing the computation offloading decision making policy.Since wireless network states and computing requests have stochastic properties and the environment’s dynamics are unknown,we use the modelfree reinforcement learning(RL)framework to formulate and tackle the computation offloading problem.Each mobile user learns through interactions with the environment and the estimate of its performance in the form of value function,then it chooses the overhead-aware optimal computation offloading action(local computing or edge computing)based on its state.The state spaces are high-dimensional in our work and value function is unrealistic to estimate.Consequently,we use deep reinforcement learning algorithm,which combines RL method Q-learning with the deep neural network(DNN)to approximate the value functions for complicated control applications,and the optimal policy will be obtained when the value function reaches convergence.Simulation results showed that the effectiveness of the proposed method in comparison with baseline methods in terms of total overheads of all mobile users.展开更多
As an implantable biomaterial,polyetherketoneketone(PEKK)exhibits good mechanical strength but it is biologically inert while tantalum(Ta)possesses outstanding osteogenic bioactivity but has a high density and elastic...As an implantable biomaterial,polyetherketoneketone(PEKK)exhibits good mechanical strength but it is biologically inert while tantalum(Ta)possesses outstanding osteogenic bioactivity but has a high density and elastic modulus.Also,silicon nitride(SN)has osteogenic and antibacterial activity.In this study,a microporous surface containing both SN and Ta microparticles on PEKK(STP)exhibiting excellent osteogenic and antibacterial activity was created by sulfonation.Compared with sulfonated PEKK(SPK)without microparticles,the surface properties(roughness,surface energy,hydrophilicity and protein adsorption)of STP significantly increased due to the SN and Ta particles presence on the microporous surface.In addition,STP also exhibited outstanding antibacterial activity,which inhibited bacterial growth in vitro and prevented bacterial infection in vivo because of the presence of SN particles.Moreover,the microporous surface of STP containing both SN and Ta particles remarkably induced response(e.g.,proliferation and differentiation)of rat bone mesenchymal stem(rBMS)cells in vitro.Furthermore,STP significantly improved new bone regeneration and osseointegration in vivo.Regarding the induction of cellular response in vitro and improvement of osseointegration in vivo,the microporous surface containing Ta was better than the surface with SN particles.In conclusion,STP with optimized surface properties activated cellular responses in vitro,enhanced osseointegration and prevented infection in vivo.Therefore,STP possessed the dual biofunctions of excellent osteogenic and antibacterial activity,showing great potential as a bone substitute.展开更多
The Cu-exchanged SSZ-13 with the small-pore chabazite framework is considered as a highly efficient catalyst for selective catalytic reduction of NO with NH_(3)(NH_(3)-SCR).In order to further improve the catalytic pr...The Cu-exchanged SSZ-13 with the small-pore chabazite framework is considered as a highly efficient catalyst for selective catalytic reduction of NO with NH_(3)(NH_(3)-SCR).In order to further improve the catalytic property,a series of Mn ion-assisted Cu/SSZ-13 powder catalysts were prepared by co-exchange method and stepwise exchange method.It is found that the NH_(3)-SCR activity,N_(2) selectivity,hydrothermal stability and sulfur resistance of Cu/SSZ-13 are promoted by introducing a minority of Mn(0.15%to 0.23%(mass))through co-exchange method.Characterization results reveal that the Cu,Mn co-exchange enables the higher amounts of Cu^(2+)active sites,the abundant medium strong and strong acid,the optimized ratio of Lewis acid to Brønsted acid etc.,which are required for a good NH_(3)-SCR catalytic property over broad temperature range and under harsh working environment.Moreover,a monolithic catalyst was prepared by impregnating a cordierite ceramic support into the coating slurry containing the optimized CuMn/SSZ-13 powder.The diesel engine bench tests show that Cu,Mn co-exchange gives the monolith catalyst a better catalytic property than commercial catalysts.This work provides an important guidance for the rational design of secondary-ion-assisted zeolites applied in NH_(3)-SCR.展开更多
Pt catalysts with nitrogen-doped graphene oxide (GO) as support and CeO_(2)as promoter were prepared by impregnation method,and their catalytic oxidation of formaldehyde (HCHO) at room temperature was tested.The Pt-Ce...Pt catalysts with nitrogen-doped graphene oxide (GO) as support and CeO_(2)as promoter were prepared by impregnation method,and their catalytic oxidation of formaldehyde (HCHO) at room temperature was tested.The Pt-CeO_(2)/N-rGO (reduced GO) with a mass fraction of 0.7% Pt and 0.8%CeO_(2)exhibited an excellent catalytic performance with the 100% conversion of HCHO at room temperature.Physicochemical characterization demonstrated that nitrogendoping greatly increased the defect degree and the specific surface area of GO,enhanced the dispersion of Pt and promoted more zero-valent Pt.The synergistic effect between CeO_(2)and Pt was also beneficial to the dispersion of Pt.Nitrogen-doping promoted the production of more Ce3+ions,generating more oxygen vacancies,which was conducive to O_(2)adsorption.As a result,the catalyst exhibited enhanced redox properties,leading to the best catalytic activity.Finally,an attempt to propose the reaction mechanism of HCHO oxidation has been made.展开更多
In addition to the plasmon-mediated resonant coupling mechanism,the excitation of hot electron induced by plasmon presents a promising path for developing high-performance optoelectronic devices tailored for various a...In addition to the plasmon-mediated resonant coupling mechanism,the excitation of hot electron induced by plasmon presents a promising path for developing high-performance optoelectronic devices tailored for various applications.This study introduces a sophisticated design for a solar-blind ultraviolet(UV)detector array using linear In-doped Ga_(2)O_(3) (InGaO)modulated by platinum(Pt)nanoparticles(PtNPs).The construction of this array involves depositing a thin film of Ga_(2)O_(3) through the plasmonenhanced chemical vapor deposition(PECVD)technique.Subsequently,PtNPs were synthesized via radio-frequency magnetron sputtering and annealing process.The performance of these highly uniform arrays is significantly enhanced owing to the generation of high-energy hot electrons.This process is facilitated by non-radiative decay processes induced by PtNPs.Notably,the array achieves maximum responsivity(R)of 353 mA/W,external quantum efficiency(EQE)of 173%,detectivity(D*)of approximately 10~(13)Jones,and photoconductive gain of 1.58.In addition,the standard deviation for photocurrent stays below17%for more than 80%of the array units within the array.Subsequently,the application of this array extends to photon detection in the deep-UV(DUV)range.This includes critical areas such as imaging sensing and water quality monitoring.By leveraging surface plasmon coupling,the array achieves high-performance DUV photon detection.This approach enables a broad spectrum of practical applications,underscoring the significant potential of this technology for the advancement of DUV detectors.展开更多
基金This project is supported by National Natural Science Foundation of China (No.59905011, 60275041).
文摘Vibration acceleration signals are often measured from case surface of arunning machine to monitor its condition. If the measured vibration signals display to have periodicimpulse components with a certain frequency, there may exist a corresponding local fault in themachine, and if further extracting the periodic impulse components from the vibration signals, theseverity of the local fault can be estimated and tracked. However, the signal-to-noise ratios (SNRs)of the vibration acceleration signals are often so small that the periodic impulse components aresubmersed in much background noises and other components, and it is difficult or inconvenient for usto detect and extract the periodic impulse components with the current common analyzing methods forvibration signals. Therefore, another technique, called singular value decomposition (SVD), istried to be introduced to solve the problem. First, the principle of detecting and extracting thesignal periodic components using singular value decomposition is summarized and discussed. Second,the infeasibility of the direct use of the existing SVD based detecting and extracting approach ispointed out. Third, the approach to construct the matrix for SVD from the signal series is improvedlargely, which is the key program to improve the SVD technique; Other associated improvement is alsoproposed. Finally, a simulating application example and a real-life application example ondetecting and extracting the periodic impulse components are given, which showed that the introducedand improved SVD technique is feasible.
基金financially supported by the National Natural Science Foundation of China(grant No.61170147)the Scientific and Technological Project of Shaanxi Province in China(grant No.2019GY-038)。
文摘Recently,the development and application of lane line departure warning systems have been in the market.For any of the systems,the key part of lane line tracking,lane line identification,or lane line departure warning is whether it can accurately and quickly detect lane lines.Since 1990 s,they have been studied and implemented for the situations defined by the good viewing conditions and the clear lane markings on road.After then,the accuracy for particular situations,the robustness for a wide range of scenarios,time efficiency and integration into higher-order tasks define visual lane line detection and tracking as a continuing research subject.At present,these kinds of lane marking line detection methods based on machine vision and image processing can be divided into two categories:the traditional image processing and semantic segmentation(includes deep learning)methods.The former mainly involves feature-based and model-based steps,and which can be classified into similarity-and discontinuity-based ones;and the model-based step includes different parametric straight line,curve or pattern models.The semantic segmentation includes different machine learning,neural network and deep learning methods,which is the new trend for the research and application of lane line departure warning systems.This paper describes and analyzes the lane line departure warning systems,image processing algorithms and semantic segmentation methods for lane line detection.
基金Under the auspices of Asia Pacific Network for Global Change Research(APN)Global Change Fund Project(No.ARCP2015-03CMY-Li)+2 种基金National Natural Science Foundation of China(No.41271361,41501575)National Key Research and Development Project(No.2018YFD0800201)Key Project of Chinese National Programs for Fundamental Research and Development(No.2010CB950702)
文摘Understanding the net primary productivity(NPP) of grassland is crucial to evaluate the terrestrial carbon cycle. In this study, we investigated the spatial distribution and the area of global grassland across the globe. Then, we used the Carnegie-Ames-Stanford Approach(CASA) model to estimate global grassland NPP and explore the spatio-temporal variations of grassland NPP in response to climate change from 1982 to 2008. Results showed that the largest area of grassland distribution during the study period was in Asia(1737.23 × 104 km^2), while the grassland area in Europe was relatively small(202.83 × 10~4 km^2). Temporally, the total NPP increased with fluctuations from 1982 to 2008, with an annual increase rate of 0.03 Pg C/yr. The total NPP experienced a significant increasing trend from 1982 to 1995, while a decreasing trend was observed from 1996 to 2008. Spatially, the grassland NPP in South America and Africa were higher than the other regions, largely as a result of these regions are under warm and wet climatic conditions. The highest mean NPP was recorded for savannas(560.10 g C/(m^2·yr)), whereas the lowest was observed in open shrublands with an average NPP of 162.53 g C/(m^2·yr). The relationship between grassland NPP and annual mean temperature and annual precipitation(AMT, AP, respectively) varies with changes in AP, which indicates that, grassland NPP is more sensitive to precipitation than temperature.
基金supported by the National Key Research and Development Program of China(Nos.2017YFC0601602 and 2016YFF0200206)the National Natural Science Foundation of China(Nos.61727821,61475139,11604296,and 11174249)
文摘The first Asia-Pacific Comparison of Absolute Gravimeters(APMP.M.G-K1) was organized by the National Institute of Metrology(NIM) of China from December 21, 2015 to March 25, 2016 in Changping, Beijing. Our compact cold atom gravimeter(CCAG) was transported from Hangzhou to Beijing with a long distance of about1200 km to participate in this comparison. The CCAG is the only one, to the best of our knowledge, that is based on the principle of atom interferometry among all the instruments. Absolute gravity in the indicated three test sites has been measured as requested by the organizer. The sensitivity of our CCAG is estimated to be90 μGal∕Hz p, even when the measurements are carried out without any vibration isolation. Besides, the accuracy of this gravimeter has been evaluated to be about 19 μGal by considering the significant system errors.Our results show a good agreement with the given reference value.
文摘Background Myocarditis is a common,potentially life-threatening disease that presents a wide rang of symptoms in children,as an important underlying etiology of other myocardial diseases such as dilated and arrhythmogenic right ventricular cardiomyopathy.The incidence of nonfatal myocarditis is probably greater than that of the one actually diagnosed,which is the result of the challenges of establishing the diagnosis in standard clinical settings.Currently,no single clinical or imaging finding confirms the diagnosis of myocarditis with absolute certainty.Historically,clinical exam,electrocardiogram (ECG),serology and echocardiography had an unsatisfactory diagnostic accuracy in myocarditis.Endomyocardial biopsy remains as a widely accepted standard,but may not be suitable for every patient,especially for those with less severe disease.Our aim was to find the changes in cardiovascular magnetic resonance (CMR) imaging of children with myocarditis diagnosed by clinical criteria.Methods We studied 25 children (18 male,7 female; aged from 5-17 years) with diagnosed myocarditis by clinical criteria.CMR included function analyses,T2-weighted imaging,T1-weighted imaging before and after i.v.gadolinium injection (early gadolinium enhancement (EGE) and late gadolinium enhancement (LGE)).Results The T2 ratio was elevated in 21 children (84%,11 in anterolateral (44%),5 in inferolateral (20%),and 5 in septum (20%)),EGE was present in 9 children (36%,3 in anterolateral (12%),4 in inferolateral (20%),and 2 in septum (8%)),and LGE was present in 5 children (20%,2 in anterolateral (8%),1 in inferolateral (4%),1 in septum (4%),and 1 in midwall of left ventricular (LV) wall).In 9 children (36%),two (or more) out of three sequences (T2,EGE,LGE) were abnormal.Conclusions The CMR findings in children with clinically diagnosed myocarditis vary within the groups,including regional or global myocardial signal increase in T2-w
基金National Natural Science Foundation of China (61174221)
文摘A formal analysis to footprint problem with effects of angle of attack (AOA) is presented. First a flexible and rapid standardized method for footprint generation is developed. Zero bank angle control strategy and the maximum crossrange method are used to obtain virtual target set; afterward, closed-loop bank angle guidance law is used to find footprint by solving closest approach problem for each element in virtual target set. Then based on quasi-equilibrium glide condition, the typical inequality reentry trajectory constraints are converted to angle of attack lower boundary constraint. Constrained by the lower boundary, an original and practical angle of attack parametric method is proposed. By using parametric angle of attack profile, optimization algorithm for angle of attack is designed and the impact of angle of attack to footprint is discussed. Simulations with different angle of attack profiles are presented to demonstrate the performance of the proposed footprint solution method and validity of optimal algorithm.
文摘A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.
基金Key Medical Program of Science and Technology Development of Shanghai(17441902000 and 19441906100)the National Natural Science Foundation of China(81771990 and 81801845)Shenzhen Fundamental Research Program(JCYJ20190807160811355).
文摘Polyetherketoneketone(PEKK)exhibits admirable biocompatibility and mechanical performances but bioinert while tantalum(Ta)possesses excellent osteogenesis and osseointegration but high elastic modulus and density,and processing is too difficult and expensive.In the present study,combining of the advantages of both PEKK and Ta,implantable composites of PEKK/Ta were fabricated by blending PEKK with Ta microparticles of 20 v%(PT20)and 40 v%(PT40)content.In comparison with PT20 and PEKK,the surface hydrophilicity,surface energy,roughness and proteins adsorption as well as mechanical performances of PT40 significantly increased because of the higher Ta particles content in PEKK.Furthermore,PT40 exhibited the mechanical performances(e.g.,compressive strength and modulus of elasticity)close to the cortical bone of human.Compared with PT20 and PEKK,PT40 with higher Ta content remarkably enhanced the responses(including adhesion,proliferation and osteogenic differentiation)of MC3T3-E1 cells in vitro.Moreover,PT40 markedly improved bone formation as well as osseointegration in vivo.In short,incorporation of Ta microparticles into PEKK created implantable composites with improved surface performances,which played key roles in stimulating cell responses/bone formation as well as promoting osseointegration.PT40 might have great potential for bear-loading bone substitute.
基金financially supported by Hunan Provincial Natural Science Foundation of China(grant 2017JJ1017)National Key R&D Program of China(grant 2017YFD0501403)+1 种基金National Natural Science Foundation of China(grant 31400275)Hunan Provincial Natural Science Foundation of China(2018JJ2172).
文摘Gelsemium elegans(G.elegans)(2 n=2 x=16)is genus of flowering plants belonging to the Gelsemicaeae family.Here,a high-quality genome assembly using the Oxford Nanopore Technologies(ONT)platform and high-throughput chromosome conformation capture techniques(Hi-C)were used.A total of 56.11 Gb of raw GridION X5 platform ONT reads(6.23 Gb per cell)were generated.After filtering,53.45 Gb of clean reads were obtained,giving 160 x coverage depth.The de novo genome assemblies 335.13 Mb,close to the 338 Mb estimated by k-mer analysis,was generated with contig N50 of 10.23 Mb.The vast majority(99.2%)of the G.elegans assembled sequence was anchored onto 8 pseudo-chromosomes.The genome completeness was then evaluated and 1338 of the 1440 conserved genes(92.9%)could be found in the assembly.Genome annotation revealed that 43.16%of the G.elegans genome is composed of repetitive elements and 23.9%is composed of long terminal repeat elements.We predicted 26,768 protein-coding genes,of which 84.56%were functionally annotated.The genomic sequences of G.elegans could be a valuable source for comparative genomic analysis in the Gelsemicaeae family and will be useful for understanding the phylogenetic relationships of the indole alkaloid metabolism.
基金National Natural Science Foundation of China(12274366)。
文摘In this paper,we present the experiment and the theory scheme of light-atom interaction in atomic magnetometers by using a hybrid Poincarébeam(HPB)to solve an annoying problem,named“dead zone.”This kind of magnetometer can be sensitive to arbitrary directions of external magnetic fields.The HPB has a complex polarization distribution,consisting of a vector radially polarized beam and a scalar circularly polarized beam in our experiment.These two kinds of beams have different directions of dead zones of external magnetic fields;thereby,the atomic magnetometer with an HPB can avoid the non-signal area when the direction of the external magnetic field is in the plane perpendicular to the light polarization plane.Furthermore,the optical magnetic resonance(OMR)signal using an HPB still has no dead zones even when the direction of the external magnetic field is in the plane parallel to the polarization plane in our scheme.Our work has the potential to simplify and optimize dead-zone-free atomic magnetometers.
基金supported by the National Natural Science Foundation of China(82002638)the National Natural Science Foundation of Sichuan Province(2023NSFSC0734).
文摘Background:Inhibitor of NF-κB kinase-interacting protein(IKIP)is known to promote proliferation of glioblastoma(GBM)cells,but how it affects migration and invasion by those cells is unclear.Methods:We compared levels of IKIP between glioma tissues and normal brain tissue in clinical samples and public databases.We examined the effects of IKIP overexpression and knockdown on the migration and invasion of GBM using transwell and wound healing assays,and we compared the transcriptomes under these different conditions to identify the molecular mechanisms involved.Results:Based on data from our clinical samples and from public databases,IKIP was overexpressed in GBM tumors,and its expression level correlated inversely with survival.IKIP overexpression in GBM cells inhibited migration and invasion in transwell and wound healing assays,whereas IKIP knockdown exerted the opposite effects.IKIP overexpression in GBM cells that were injected into mouse brain promoted tumor growth but inhibited tumor invasion of surrounding tissue.The effects of IKIP were associated with downregulation of THBS1 mRNA and concomitant inhibition of THBS1/FAK signaling.Conclusions:IKIP inhibits THBS1/FAK signaling to suppress migration and invasion of GBM cells.
基金the National Natural Science Foundation of China(Nos.32070584,81830028,31771398,82222016,and 8207040100)the Zhejiang Provincial Natural Science Foundation of China(No.LZ19C060001)the Fundamental Research Funds for the Central Universities(No.2019QNA6001)。
文摘Auditory neuropathy spectrum disorder(ANSD)represents a variety of sensorineural deafness conditions characterized by abnormal inner hair cells and/or auditory nerve function,but with the preservation of outer hair cell function.ANSD represents up to 15%of individuals with hearing impairments.Through mutation screening,bioinformatic analysis and expression studies,we have previously identified several apoptosis-inducing factor(AIF)mitochondria-associated 1(AIFM1)variants in ANSD families and in some other sporadic cases.Here,to elucidate the pathogenic mechanisms underlying each AIFM1 variant,we generated AIF-null cells using the clustered regularly interspersed short palindromic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)system and constructed AIF-wild type(WT)and AIF-mutant(mut)(p.T260A,p.R422W,and p.R451Q)stable transfection cell lines.We then analyzed AIF structure,coenzyme-binding affinity,apoptosis,and other aspects.Results revealed that these variants resulted in impaired dimerization,compromising AIF function.The reduction reaction of AIF variants had proceeded slower than that of AIF-WT.The average levels of AIF dimerization in AIF variant cells were only 34.5%-49.7%of that of AIF-WT cells,resulting in caspase-independent apoptosis.The average percentage of apoptotic cells in the variants was 12.3%-17.9%,which was significantly higher than that(6.9%-7.4%)in controls.However,nicotinamide adenine dinucleotide(NADH)treatment promoted the reduction of apoptosis by rescuing AIF dimerization in AIF variant cells.Our findings show that the impairment of AIF dimerization by AIFM1 variants causes apoptosis contributing to ANSD,and introduce NADH as a potential drug for ANSD treatment.Our results help elucidate the mechanisms of ANSD and may lead to the provision of novel therapies.
基金This work was supported by the National Natural Science Foundation of China(61571059 and 61871058).
文摘To reduce the transmission latency and mitigate the backhaul burden of the centralized cloud-based network services,the mobile edge computing(MEC)has been drawing increased attention from both industry and academia recently.This paper focuses on mobile users’computation offloading problem in wireless cellular networks with mobile edge computing for the purpose of optimizing the computation offloading decision making policy.Since wireless network states and computing requests have stochastic properties and the environment’s dynamics are unknown,we use the modelfree reinforcement learning(RL)framework to formulate and tackle the computation offloading problem.Each mobile user learns through interactions with the environment and the estimate of its performance in the form of value function,then it chooses the overhead-aware optimal computation offloading action(local computing or edge computing)based on its state.The state spaces are high-dimensional in our work and value function is unrealistic to estimate.Consequently,we use deep reinforcement learning algorithm,which combines RL method Q-learning with the deep neural network(DNN)to approximate the value functions for complicated control applications,and the optimal policy will be obtained when the value function reaches convergence.Simulation results showed that the effectiveness of the proposed method in comparison with baseline methods in terms of total overheads of all mobile users.
基金The grants were supported by the National Natural Science Foundation of China(81771990,81801845 and 81200815)Key Medical Program of Science and Technology Development of Shanghai(19441906100 and 17441902000)Shenzhen Fundamental Research Program(JCYJ20190807160811355).
文摘As an implantable biomaterial,polyetherketoneketone(PEKK)exhibits good mechanical strength but it is biologically inert while tantalum(Ta)possesses outstanding osteogenic bioactivity but has a high density and elastic modulus.Also,silicon nitride(SN)has osteogenic and antibacterial activity.In this study,a microporous surface containing both SN and Ta microparticles on PEKK(STP)exhibiting excellent osteogenic and antibacterial activity was created by sulfonation.Compared with sulfonated PEKK(SPK)without microparticles,the surface properties(roughness,surface energy,hydrophilicity and protein adsorption)of STP significantly increased due to the SN and Ta particles presence on the microporous surface.In addition,STP also exhibited outstanding antibacterial activity,which inhibited bacterial growth in vitro and prevented bacterial infection in vivo because of the presence of SN particles.Moreover,the microporous surface of STP containing both SN and Ta particles remarkably induced response(e.g.,proliferation and differentiation)of rat bone mesenchymal stem(rBMS)cells in vitro.Furthermore,STP significantly improved new bone regeneration and osseointegration in vivo.Regarding the induction of cellular response in vitro and improvement of osseointegration in vivo,the microporous surface containing Ta was better than the surface with SN particles.In conclusion,STP with optimized surface properties activated cellular responses in vitro,enhanced osseointegration and prevented infection in vivo.Therefore,STP possessed the dual biofunctions of excellent osteogenic and antibacterial activity,showing great potential as a bone substitute.
基金supported by the National Natural Science Foundation of China (22278086)
文摘The Cu-exchanged SSZ-13 with the small-pore chabazite framework is considered as a highly efficient catalyst for selective catalytic reduction of NO with NH_(3)(NH_(3)-SCR).In order to further improve the catalytic property,a series of Mn ion-assisted Cu/SSZ-13 powder catalysts were prepared by co-exchange method and stepwise exchange method.It is found that the NH_(3)-SCR activity,N_(2) selectivity,hydrothermal stability and sulfur resistance of Cu/SSZ-13 are promoted by introducing a minority of Mn(0.15%to 0.23%(mass))through co-exchange method.Characterization results reveal that the Cu,Mn co-exchange enables the higher amounts of Cu^(2+)active sites,the abundant medium strong and strong acid,the optimized ratio of Lewis acid to Brønsted acid etc.,which are required for a good NH_(3)-SCR catalytic property over broad temperature range and under harsh working environment.Moreover,a monolithic catalyst was prepared by impregnating a cordierite ceramic support into the coating slurry containing the optimized CuMn/SSZ-13 powder.The diesel engine bench tests show that Cu,Mn co-exchange gives the monolith catalyst a better catalytic property than commercial catalysts.This work provides an important guidance for the rational design of secondary-ion-assisted zeolites applied in NH_(3)-SCR.
基金the National Natural Science Foundation of China (Nos. U1862102, 22176010 and 21976012) for the financial supportthe Fundamental Research Funds for the Central Universities (Nos. XK1802-1, JD2117)。
文摘Pt catalysts with nitrogen-doped graphene oxide (GO) as support and CeO_(2)as promoter were prepared by impregnation method,and their catalytic oxidation of formaldehyde (HCHO) at room temperature was tested.The Pt-CeO_(2)/N-rGO (reduced GO) with a mass fraction of 0.7% Pt and 0.8%CeO_(2)exhibited an excellent catalytic performance with the 100% conversion of HCHO at room temperature.Physicochemical characterization demonstrated that nitrogendoping greatly increased the defect degree and the specific surface area of GO,enhanced the dispersion of Pt and promoted more zero-valent Pt.The synergistic effect between CeO_(2)and Pt was also beneficial to the dispersion of Pt.Nitrogen-doping promoted the production of more Ce3+ions,generating more oxygen vacancies,which was conducive to O_(2)adsorption.As a result,the catalyst exhibited enhanced redox properties,leading to the best catalytic activity.Finally,an attempt to propose the reaction mechanism of HCHO oxidation has been made.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB3605404)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.62204125)+2 种基金the Joint Funds of the National Natural Science Foundation of China(Grant No.U23A20349)the Natural Science Research Start-up Foundation of Recuring Talents of Nanjing University of Posts and Telecommunications(Grant Nos.XK1060921115 and XK1060921002)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX23_0300)。
文摘In addition to the plasmon-mediated resonant coupling mechanism,the excitation of hot electron induced by plasmon presents a promising path for developing high-performance optoelectronic devices tailored for various applications.This study introduces a sophisticated design for a solar-blind ultraviolet(UV)detector array using linear In-doped Ga_(2)O_(3) (InGaO)modulated by platinum(Pt)nanoparticles(PtNPs).The construction of this array involves depositing a thin film of Ga_(2)O_(3) through the plasmonenhanced chemical vapor deposition(PECVD)technique.Subsequently,PtNPs were synthesized via radio-frequency magnetron sputtering and annealing process.The performance of these highly uniform arrays is significantly enhanced owing to the generation of high-energy hot electrons.This process is facilitated by non-radiative decay processes induced by PtNPs.Notably,the array achieves maximum responsivity(R)of 353 mA/W,external quantum efficiency(EQE)of 173%,detectivity(D*)of approximately 10~(13)Jones,and photoconductive gain of 1.58.In addition,the standard deviation for photocurrent stays below17%for more than 80%of the array units within the array.Subsequently,the application of this array extends to photon detection in the deep-UV(DUV)range.This includes critical areas such as imaging sensing and water quality monitoring.By leveraging surface plasmon coupling,the array achieves high-performance DUV photon detection.This approach enables a broad spectrum of practical applications,underscoring the significant potential of this technology for the advancement of DUV detectors.