Water vapor in the earth′s upper atmosphere plays a crucial role in the radiative balance, hydrological process, and climate change. Based on the latest moderate-resolution imaging spectroradiometer(MODIS) data, this...Water vapor in the earth′s upper atmosphere plays a crucial role in the radiative balance, hydrological process, and climate change. Based on the latest moderate-resolution imaging spectroradiometer(MODIS) data, this study probes the spatio-temporal variations of global water vapor content in the past decade. It is found that overall the global water vapor content declined from 2003 to 2012(slope b = –0.0149, R = 0.893, P = 0.0005). The decreasing trend over the ocean surface(b = –0.0170, R = 0.908, P = 0.0003) is more explicit than that over terrestrial surface(b = –0.0100, R = 0.782, P = 0.0070), more significant over the Northern Hemisphere(b = –0.0175, R = 0.923, P = 0.0001) than that over the Southern Hemisphere(b = –0.0123, R = 0.826, P = 0.0030). In addition, the analytical results indicate that water vapor content are decreasing obviously between latitude of 36°N and 36°S(b = 0.0224, R = 0.892, P = 0.0005), especially between latitude of 0°N and 36°N(b = 0.0263, R = 0.931, P = 0.0001), while the water vapor concentrations are increasing slightly in the Arctic regions(b = 0.0028, R = 0.612, P = 0.0590). The decreasing and spatial variation of water vapor content regulates the effects of carbon dioxide which is the main reason of the trend in global surface temperatures becoming nearly flat since the late 1990 s. The spatio-temporal variations of water vapor content also affect the growth and spatial distribution of global vegetation which also regulates the global surface temperature change, and the climate change is mainly caused by the earth's orbit position in the solar and galaxy system. A big data model based on gravitational-magmatic change with the solar or the galactic system is proposed to be built for analyzing how the earth's orbit position in the solar and galaxy system affects spatio-temporal variations of global water vapor content, vegetation and temperature at large spatio-temporal scale. This comprehensive examination of water vapor changes promises a holistic understanding展开更多
Global warming as a result of rapid increase in atmospheric COa emission is significantly influencing world's economy and human activities. Carbon sequestra- tion in phytoliths is regarded as a highly stable carbon s...Global warming as a result of rapid increase in atmospheric COa emission is significantly influencing world's economy and human activities. Carbon sequestra- tion in phytoliths is regarded as a highly stable carbon sink mechanism in terrestrial ecosystems to mitigate climate change. However, the response of plant phytolith-occluded carbon (PhytOC) to external silicon amendments remains unclear. In this study, we investigated the effects of basalt powder (BP) amendment on phytolith carbon sequestration in rice (Oryza sativa), a high-PhytOC accumulator. The results showed that the contents of phytolith and PhytOC in rice increased with BP amendment. The PhytOC produc- tion flux in different rice plant parts varied considerably (0.005-0.041 Mg CO_2 ha^-1 a^-1), with the highest flux in the sheath. BP amendment can significantly enhance flux of phytolith carbon sequestration in croplands by 150 %. If the global rice cultivation of 1.55 × 10^8 ha had a similar flux of PhytOC production in this study, 0.61× 10^7 to 1.54 × 10^7 Mg CO_2 would be occluded annually within global rice phytoliths. These findings highlight that exter- nal silicon amendment such as BP amendment represents an effective potential management tool to increase long- term biogeochemical carbon sequestration in crops such as rice and may also be an efficient way to mitigate the global warming indirectly.展开更多
Lymphatic vessels,comprising the secondary circulatory system in human body,play a multifaceted role in maintaining homeostasis among various tissues and organs.They are tasked with a serious of responsibilities,inclu...Lymphatic vessels,comprising the secondary circulatory system in human body,play a multifaceted role in maintaining homeostasis among various tissues and organs.They are tasked with a serious of responsibilities,including the regulation of lymph absorption and transport,the orchestration of immune surveillance and responses.Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks.Lymphangiogenesis,as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins,is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo.However,abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases.Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis,to further modulate the progression of diseases.Actually,an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation.Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis,but improves the efficacy of diverse treatments.In conclusion,we present a comprehensive overview of lymphatic vessel development and physiological functions,and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases.Moreover,we summarize the targeting therapeutic values of abnormal lymphangiogenesis,providing novel perspectives for treatment strategy of multiple human diseases.展开更多
With the rapid economic expansion, environmental degradation has become increasingly sever during the past three decades. Soil pollutions associated with toxic organic compounds and heavy metals have been identified i...With the rapid economic expansion, environmental degradation has become increasingly sever during the past three decades. Soil pollutions associated with toxic organic compounds and heavy metals have been identified in China. The accumulation of heavy metals in soils and its impact on food safety is of increasing concern. It has been reported that more than 20 million ha of land have been contaminated with heavy metals that can result in the potential health risks to human beings and soil ecosystems. This can potentially jeopardize the food security in China. Accumulation of heavy metals in suburb and rural soils is closely related to many anthropogenic activities, such as application of fertilizers and pesticides, irrigation of wastewater, discharge of mining, improper disposal of metal containing wastes, land application of animal manures, sewage sludge and coal combustion residues. Arable crops and vegetables in suburb and rural can take up heavy metals from contaminated soils, which is one of the main pathways of introducing heavy metals to human food chain. Events related to soil and vegetable contamination, food safety and human health risks, e.g., rice and vegetables with elevated concentrations of cadmium, are often reported in the media in recent years. The Chinese government has recently developed a number of new policies for prevention of soils from further soil contamination, and remediation of contaminated soils. This presentation will provide a comprehensive review on heavy metal pollution in soils and its impacts on food security in China, and also summarize some new technologies for remediation of soils contaminated with heavy metals.展开更多
Covering extensive parts of China, Karst landscapes are exceptional because rapid and intensive land use change has caused severe ecosystem degradation within only the last 50 years. The twentieth century intensificat...Covering extensive parts of China, Karst landscapes are exceptional because rapid and intensive land use change has caused severe ecosystem degradation within only the last 50 years. The twentieth century intensification in food production through agriculture has led to a rapid deterioration of soil quality, evidenced in reduced crop production and rapid loss of soil. In many areas, a tipping point appears to have been passed as basement rock is exposed and 'rocky desertification' dominates. Through the establishment of the "Soil processes and ecological services in the karst critical zone of SW China"(SPECTRA)Critical Zone Observatory(CZO) we will endevaour to understand the fundmental processes involved in soil production and erosion, and investigate the integrated geophysical-geochemical-ecological responses of the CZ to perturbations. The CZ spans a gradient from undisturbed natural vegetation through human perturbed landscapes.We seek to understand the importance of heterogeneity insurface and below-ground morphology and flow pathways in determining the spatial distribution of key stocks(soil,C, vegetation, etc.) and their control on ecosystem service delivery. We will assess the extent to which the highly heterogeneous critical zone resources can be restored to enable sustainable delivery of ecosystem services. This paper presents the CZO design and initial assessment of soil and soil organic carbon stocks and evidence for their stability based on caesium-137(^(137) Cs) data.展开更多
Occlusion of carbon(C) within phytoliths(Phyt OC) is becoming one of the most promising terrestrial C sequestration mechanisms. This study explored the production of Phyt OC within 35 bamboo species belonging to three...Occlusion of carbon(C) within phytoliths(Phyt OC) is becoming one of the most promising terrestrial C sequestration mechanisms. This study explored the production of Phyt OC within 35 bamboo species belonging to three ecotypes using methods of microwave digestion. The aim of this study is to explore the present and potential C sequestration rate within phytoliths of bamboo species from three ecotypes. Phyt OC content in bamboos of three ecotypes ranges from 0.07 % to 0.42 %. The mean Phyt OC production flux decreases as: clustered bamboo(0.050 ±0.016 t CO2ha-1a-1) & mixed bamboo(0.049 ± 0.016 t CO2ha-1a-1) [ scattered bamboo(0.038 ± 0.020 t CO2ha-1a-1). The phytolith carbon sequestration in Chinese bamboo is estimated to be 0.293 ± 0.127 Tg(1 Tg =1012g) CO2a-1; approximately 75 %, 3 %, and 22 % of which is contributed from scattered, mixed and clustered bamboo, respectively. Taking the Phyt OC production flux of 0.18 ± 0.12 t CO2ha-1a-1and current annual area increasing rate of 3 %, global bamboo phytoliths wouldsequester 11.9 ± 7.9 Tg CO2a-1by 2050. Consequently,bamboo forests have significant potential to mitigate the increasing concentration of atmospheric CO2 by maximizing Phyt OC production flux and expanding bamboos.展开更多
Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ...Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ignored. In this study, we analyzed the stoichiometry of N, P, and S in leaves of 348 plant species in China's forests. The results show higher N content and higher molar ratios of N/P and P/S in Angiospermae than in Gymnospermae. At the family level, Ulmaceae absorbed more N and P from soils than other families, and Cupressaceae absorbed more S than other families. In addition,except for bamboo and other tropical forests, leaf N and P content of China's forests generally increased from low to middle latitudes and then slightly decreased or plateaued at high latitudes. Plant ecotypes, taxonomic groups, environmental conditions, atmospheric S precipitation, and soil-available N and P significantly affected the distribution and stoichiometry of leaf N, P, and S in China's forests.Our study indicates that China's forests are likely limited by P and S deficiencies which may increase in the future.展开更多
Rivers link terrestrial ecosystems and marine ecosystems, and they transport large amounts of substances into oceans each year, including several forms of silicon(Si), carbon(C), and other nutrients. However, river da...Rivers link terrestrial ecosystems and marine ecosystems, and they transport large amounts of substances into oceans each year, including several forms of silicon(Si), carbon(C), and other nutrients. However, river damming affects the water flow and biogeochemical cycles of Si, C, and other nutrients through biogeochemical interacting processes. In this review, we first summarize the current understanding of the effects of river damming on the processes of biogeochemical Si cycle, especially the source, composition, and recycling process of biogenic silica(BSi). Then, we introduce dam impacts on the cycles of C and some other nutrients. Dissolved silicon in rivers is mainly released from phytolith dissolution and silicate weathering. BSi in suspended matter or sediments in most rivers mainly consists of phytoliths and mainly originates from soil erosion. However, diatom growth and deposition in many reservoirs formed by river interception may significantly increase the contribution of diatom Si to total BSi, and thus significantly influence the biogeochemical Si,C, and nutrient cycles. Yet the turnover of phytoliths and diatoms in different rivers formed by river damming is still poorly quantified. Thus, they should be further investigated to enhance our understanding about the effects of river damming on global biogeochemical Si, C and nutrient cycles.展开更多
Soil degradation, including rocky desertification,of the karst regions in China is severe. Karst landscapes are especially sensitive to soil degradation as carbonate rocks are nutrient-poor and easily eroded. Understa...Soil degradation, including rocky desertification,of the karst regions in China is severe. Karst landscapes are especially sensitive to soil degradation as carbonate rocks are nutrient-poor and easily eroded. Understanding the balance between soil formation and soil erosion is critical for long-term soil sustainability, yet little is known about the initial soil forming processes on karst terrain. Herein we examine the initial weathering processes of several types of carbonate bedrock containing varying amounts of non-carbonate minerals in the SPECTRA Critical Zone Observatory, Guizhou Province, Southwest China. We compared the weathering mechanisms of the bedrock to the mass transfer of mineral nutrients in a soil profile developed on these rocks and found that soil formation and nutrient contents are strongly dependent upon the weathering of interbedded layers of more silicate-rich bedrock(marls). Atmospheric inputs from dust were also detected.展开更多
Topography and land use affect soil organic carbon(SOC) storage, stabilization, and turnover, through several biogeochemical processes. This study investigated the aggregate composition and SOC content of bulk soils a...Topography and land use affect soil organic carbon(SOC) storage, stabilization, and turnover, through several biogeochemical processes. This study investigated the aggregate composition and SOC content of bulk soils and aggregates at different slope positions under different land uses in a typical karst catchment of southwestern China. Our results show that the proportion of macro-aggregates and the SOC content of bulk soils and aggregates at different slope positions decreased from the upper to the lower slope. The SOC content generally increased with an increase in the mean weight diameter and proportion of macro-aggregates under different land uses. Our results indicate that macro-aggregates in forest and grassland soils make a greater contribution to both aggregate composition and SOC content than that in arable land soils. Therefore,converting farmland to forest or grassland can facilitate the accumulation of macro-aggregates as well as the storage of SOC.展开更多
基金Under the auspices of National Key Research and Development Program(No.2016YFC0500203)National Natural Science Foundation of China(No.41571427)
文摘Water vapor in the earth′s upper atmosphere plays a crucial role in the radiative balance, hydrological process, and climate change. Based on the latest moderate-resolution imaging spectroradiometer(MODIS) data, this study probes the spatio-temporal variations of global water vapor content in the past decade. It is found that overall the global water vapor content declined from 2003 to 2012(slope b = –0.0149, R = 0.893, P = 0.0005). The decreasing trend over the ocean surface(b = –0.0170, R = 0.908, P = 0.0003) is more explicit than that over terrestrial surface(b = –0.0100, R = 0.782, P = 0.0070), more significant over the Northern Hemisphere(b = –0.0175, R = 0.923, P = 0.0001) than that over the Southern Hemisphere(b = –0.0123, R = 0.826, P = 0.0030). In addition, the analytical results indicate that water vapor content are decreasing obviously between latitude of 36°N and 36°S(b = 0.0224, R = 0.892, P = 0.0005), especially between latitude of 0°N and 36°N(b = 0.0263, R = 0.931, P = 0.0001), while the water vapor concentrations are increasing slightly in the Arctic regions(b = 0.0028, R = 0.612, P = 0.0590). The decreasing and spatial variation of water vapor content regulates the effects of carbon dioxide which is the main reason of the trend in global surface temperatures becoming nearly flat since the late 1990 s. The spatio-temporal variations of water vapor content also affect the growth and spatial distribution of global vegetation which also regulates the global surface temperature change, and the climate change is mainly caused by the earth's orbit position in the solar and galaxy system. A big data model based on gravitational-magmatic change with the solar or the galactic system is proposed to be built for analyzing how the earth's orbit position in the solar and galaxy system affects spatio-temporal variations of global water vapor content, vegetation and temperature at large spatio-temporal scale. This comprehensive examination of water vapor changes promises a holistic understanding
基金We thank Yanbin Cai for helping with the rice treatments. The work was supported by the National Natural Science Foundation of China (41103042), the Field Frontier Project of Insti- tute of Geochemistry. Chinese Academy of Sciences (2045200295). the Training Program for the Top Young Talents of Zhejiang Agri- cultural and Forestry University (2034070001). and the Program for the Distinguished Young and middle-aged Academic Leaders of Higher Education Institutions of Zhejiang Province (PD2013240).
文摘Global warming as a result of rapid increase in atmospheric COa emission is significantly influencing world's economy and human activities. Carbon sequestra- tion in phytoliths is regarded as a highly stable carbon sink mechanism in terrestrial ecosystems to mitigate climate change. However, the response of plant phytolith-occluded carbon (PhytOC) to external silicon amendments remains unclear. In this study, we investigated the effects of basalt powder (BP) amendment on phytolith carbon sequestration in rice (Oryza sativa), a high-PhytOC accumulator. The results showed that the contents of phytolith and PhytOC in rice increased with BP amendment. The PhytOC produc- tion flux in different rice plant parts varied considerably (0.005-0.041 Mg CO_2 ha^-1 a^-1), with the highest flux in the sheath. BP amendment can significantly enhance flux of phytolith carbon sequestration in croplands by 150 %. If the global rice cultivation of 1.55 × 10^8 ha had a similar flux of PhytOC production in this study, 0.61× 10^7 to 1.54 × 10^7 Mg CO_2 would be occluded annually within global rice phytoliths. These findings highlight that exter- nal silicon amendment such as BP amendment represents an effective potential management tool to increase long- term biogeochemical carbon sequestration in crops such as rice and may also be an efficient way to mitigate the global warming indirectly.
基金supported by the National Natural Science Foundation of China(U22A20324,82202927)Excellent Youth Foundation of Liaoning Province(2022-YQ-15).
文摘Lymphatic vessels,comprising the secondary circulatory system in human body,play a multifaceted role in maintaining homeostasis among various tissues and organs.They are tasked with a serious of responsibilities,including the regulation of lymph absorption and transport,the orchestration of immune surveillance and responses.Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks.Lymphangiogenesis,as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins,is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo.However,abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases.Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis,to further modulate the progression of diseases.Actually,an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation.Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis,but improves the efficacy of diverse treatments.In conclusion,we present a comprehensive overview of lymphatic vessel development and physiological functions,and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases.Moreover,we summarize the targeting therapeutic values of abnormal lymphangiogenesis,providing novel perspectives for treatment strategy of multiple human diseases.
文摘With the rapid economic expansion, environmental degradation has become increasingly sever during the past three decades. Soil pollutions associated with toxic organic compounds and heavy metals have been identified in China. The accumulation of heavy metals in soils and its impact on food safety is of increasing concern. It has been reported that more than 20 million ha of land have been contaminated with heavy metals that can result in the potential health risks to human beings and soil ecosystems. This can potentially jeopardize the food security in China. Accumulation of heavy metals in suburb and rural soils is closely related to many anthropogenic activities, such as application of fertilizers and pesticides, irrigation of wastewater, discharge of mining, improper disposal of metal containing wastes, land application of animal manures, sewage sludge and coal combustion residues. Arable crops and vegetables in suburb and rural can take up heavy metals from contaminated soils, which is one of the main pathways of introducing heavy metals to human food chain. Events related to soil and vegetable contamination, food safety and human health risks, e.g., rice and vegetables with elevated concentrations of cadmium, are often reported in the media in recent years. The Chinese government has recently developed a number of new policies for prevention of soils from further soil contamination, and remediation of contaminated soils. This presentation will provide a comprehensive review on heavy metal pollution in soils and its impacts on food security in China, and also summarize some new technologies for remediation of soils contaminated with heavy metals.
基金supported by the National Environmental Research Council of the UK(Grant No.NE/N007603/1)the National Science Foundation of China(Grant Nos.41571130042 and 41571130041)
文摘Covering extensive parts of China, Karst landscapes are exceptional because rapid and intensive land use change has caused severe ecosystem degradation within only the last 50 years. The twentieth century intensification in food production through agriculture has led to a rapid deterioration of soil quality, evidenced in reduced crop production and rapid loss of soil. In many areas, a tipping point appears to have been passed as basement rock is exposed and 'rocky desertification' dominates. Through the establishment of the "Soil processes and ecological services in the karst critical zone of SW China"(SPECTRA)Critical Zone Observatory(CZO) we will endevaour to understand the fundmental processes involved in soil production and erosion, and investigate the integrated geophysical-geochemical-ecological responses of the CZ to perturbations. The CZ spans a gradient from undisturbed natural vegetation through human perturbed landscapes.We seek to understand the importance of heterogeneity insurface and below-ground morphology and flow pathways in determining the spatial distribution of key stocks(soil,C, vegetation, etc.) and their control on ecosystem service delivery. We will assess the extent to which the highly heterogeneous critical zone resources can be restored to enable sustainable delivery of ecosystem services. This paper presents the CZO design and initial assessment of soil and soil organic carbon stocks and evidence for their stability based on caesium-137(^(137) Cs) data.
基金supported by the National Natural Science Foundation of China(41103042)the Field Frontier Project of Institute of Geochemistry,Chinese Academy of Sciences(2045200295)+2 种基金the Training Program for the Top Young Talents of Zhejiang Agricultural and Forestry University(2034070001)the Program for the Third Layer of 151 Talents Project of ZhejiangProvince(2035110003)the Program for the Distinguished Young and middle-aged Academic Leaders of Higher Education Institutions of Zhejiang Province(PD2013240)
文摘Occlusion of carbon(C) within phytoliths(Phyt OC) is becoming one of the most promising terrestrial C sequestration mechanisms. This study explored the production of Phyt OC within 35 bamboo species belonging to three ecotypes using methods of microwave digestion. The aim of this study is to explore the present and potential C sequestration rate within phytoliths of bamboo species from three ecotypes. Phyt OC content in bamboos of three ecotypes ranges from 0.07 % to 0.42 %. The mean Phyt OC production flux decreases as: clustered bamboo(0.050 ±0.016 t CO2ha-1a-1) & mixed bamboo(0.049 ± 0.016 t CO2ha-1a-1) [ scattered bamboo(0.038 ± 0.020 t CO2ha-1a-1). The phytolith carbon sequestration in Chinese bamboo is estimated to be 0.293 ± 0.127 Tg(1 Tg =1012g) CO2a-1; approximately 75 %, 3 %, and 22 % of which is contributed from scattered, mixed and clustered bamboo, respectively. Taking the Phyt OC production flux of 0.18 ± 0.12 t CO2ha-1a-1and current annual area increasing rate of 3 %, global bamboo phytoliths wouldsequester 11.9 ± 7.9 Tg CO2a-1by 2050. Consequently,bamboo forests have significant potential to mitigate the increasing concentration of atmospheric CO2 by maximizing Phyt OC production flux and expanding bamboos.
基金support from the National Natural Science Foundation of China(41522207,41571130042)the State’s Key Project of Research and Development Plan of China(2016YFA0601002)
文摘Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ignored. In this study, we analyzed the stoichiometry of N, P, and S in leaves of 348 plant species in China's forests. The results show higher N content and higher molar ratios of N/P and P/S in Angiospermae than in Gymnospermae. At the family level, Ulmaceae absorbed more N and P from soils than other families, and Cupressaceae absorbed more S than other families. In addition,except for bamboo and other tropical forests, leaf N and P content of China's forests generally increased from low to middle latitudes and then slightly decreased or plateaued at high latitudes. Plant ecotypes, taxonomic groups, environmental conditions, atmospheric S precipitation, and soil-available N and P significantly affected the distribution and stoichiometry of leaf N, P, and S in China's forests.Our study indicates that China's forests are likely limited by P and S deficiencies which may increase in the future.
基金the support from the State's Key Project of Research and Development Plan of China (2016YFA0601002)the National Natural Science Foundation of China (41522207,41571130042)
文摘Rivers link terrestrial ecosystems and marine ecosystems, and they transport large amounts of substances into oceans each year, including several forms of silicon(Si), carbon(C), and other nutrients. However, river damming affects the water flow and biogeochemical cycles of Si, C, and other nutrients through biogeochemical interacting processes. In this review, we first summarize the current understanding of the effects of river damming on the processes of biogeochemical Si cycle, especially the source, composition, and recycling process of biogenic silica(BSi). Then, we introduce dam impacts on the cycles of C and some other nutrients. Dissolved silicon in rivers is mainly released from phytolith dissolution and silicate weathering. BSi in suspended matter or sediments in most rivers mainly consists of phytoliths and mainly originates from soil erosion. However, diatom growth and deposition in many reservoirs formed by river interception may significantly increase the contribution of diatom Si to total BSi, and thus significantly influence the biogeochemical Si,C, and nutrient cycles. Yet the turnover of phytoliths and diatoms in different rivers formed by river damming is still poorly quantified. Thus, they should be further investigated to enhance our understanding about the effects of river damming on global biogeochemical Si, C and nutrient cycles.
基金supported by the National Environmental Research Council of the UK(Grant Nos.NE/N007530/1 and NE/N007603/1)the National Science Foundation of China(Grant No.41571130042)
文摘Soil degradation, including rocky desertification,of the karst regions in China is severe. Karst landscapes are especially sensitive to soil degradation as carbonate rocks are nutrient-poor and easily eroded. Understanding the balance between soil formation and soil erosion is critical for long-term soil sustainability, yet little is known about the initial soil forming processes on karst terrain. Herein we examine the initial weathering processes of several types of carbonate bedrock containing varying amounts of non-carbonate minerals in the SPECTRA Critical Zone Observatory, Guizhou Province, Southwest China. We compared the weathering mechanisms of the bedrock to the mass transfer of mineral nutrients in a soil profile developed on these rocks and found that soil formation and nutrient contents are strongly dependent upon the weathering of interbedded layers of more silicate-rich bedrock(marls). Atmospheric inputs from dust were also detected.
基金supported jointly by the National Natural Science Foundation of China(4132501041571130042)the State’s Key Project of Research and Development Plan of China(2016YFA0601002)
文摘Topography and land use affect soil organic carbon(SOC) storage, stabilization, and turnover, through several biogeochemical processes. This study investigated the aggregate composition and SOC content of bulk soils and aggregates at different slope positions under different land uses in a typical karst catchment of southwestern China. Our results show that the proportion of macro-aggregates and the SOC content of bulk soils and aggregates at different slope positions decreased from the upper to the lower slope. The SOC content generally increased with an increase in the mean weight diameter and proportion of macro-aggregates under different land uses. Our results indicate that macro-aggregates in forest and grassland soils make a greater contribution to both aggregate composition and SOC content than that in arable land soils. Therefore,converting farmland to forest or grassland can facilitate the accumulation of macro-aggregates as well as the storage of SOC.