Turpentine is a renewable and resourceful forest product.The deep processing and utilization of turpentine,particularly its primary componentβ-pinene,has garnered widespread attention.This study aimed to synthesize 4...Turpentine is a renewable and resourceful forest product.The deep processing and utilization of turpentine,particularly its primary componentβ-pinene,has garnered widespread attention.This study aimed to synthesize 40 derivatives ofβ-pinene,including nopinone,3-cyanopyridines of nopinone,myrtanyl acid,myrtanyl acylthioureas,and myrtanyl amides.We assessed the antiviral activities of theseβ-pinene derivatives against influenza virus A/Puerto Rico/8/34(H1N1)using the 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method.Theβ-pinene derivatives were used before and after cellular infection with the influenza virus to evaluate their preventive and therapeutic effects against the H1N1 virus.The results showed that only compound 10o exhibited a preventive effect against the H1N1 virus with a half-maximal inhibitory concentration(IC50)value of 47.6μmol/L.Among the compounds,4e,4i,and 4l demonstrated therapeutic effects against cellular infection,with compound 4e displaying the most potent therapeutic effect(IC50=17.5μmol/L),comparable to the positive control ribavirin.These findings indicated that certainβ-pinene derivatives exhibited in vitro antiviral activity against the H1N1 influenza A virus,warranting further investigation as potential anti-influenza agents.展开更多
The preparation of bioactive derivatives from the renewable natural product pinene is a hot research topic in the deep processing and utilization of pinene.In this study,β-pinene was used to develop novel molecules a...The preparation of bioactive derivatives from the renewable natural product pinene is a hot research topic in the deep processing and utilization of pinene.In this study,β-pinene was used to develop novel molecules as a promising new precursor of insecticide.A series of amide-containing derivatives ofβ-pinene were synthesized and characterized.The insecticidal activities of these derivatives against Mythimna separate and Semiaphis heraclei were tested.The structure characterization results showed that the characterization data of amide-containing derivatives were in full agreement with their proposed structures.The insecticidal activities evaluation results indicated that amide-containing derivatives exhibited weak insecticidal activity against Mythimna separate,but exhibited moderate to good insecticidal activity against Semiaphis heraclei.After testing for 72 h,the corrected mortality against Semiaphis heraclei of compounds 5c,5e,5f,5 h,5j,and 5 m was 100%at 1000 mg/L.The structure-activity relationship analysis results showed that the introduction of an amide group into the structure of derivatives improved their insecticidal activity against Semiaphis heraclei.Meanwhile,the amide-containing derivatives containing the F and NO_(2) substituted benzene ring might improve their insecticidal activity against Semiaphis heraclei.This study will be helpful for the high value-added utilization of the natural renewable resourceβ-pinene and the development of novel insecticides.展开更多
A series of dehydroabietic acid-based diarylamines have been synthesized in order to investigate their fluorescent properties, photostability, cell toxicity and in vitro fluorescence imaging. The geometries as well as...A series of dehydroabietic acid-based diarylamines have been synthesized in order to investigate their fluorescent properties, photostability, cell toxicity and in vitro fluorescence imaging. The geometries as well as their molecular properties were optimized at the B3LYP/6-31G~* level using Gaussian 03. The results indicate that molecular geometry, HOMO and LUMO energies, and energy gaps are important to predict absorption and fluorescent properties. Five of the compounds can be effectively taken up by human cervical carcinoma, human hepatocellular carcinoma SMMC-7721, human gastric cancer SGC-7901 and human lung adenocarcinoma A549 cells and strong blue fluorescent signals are detected in these cells. These compounds are potential candidates for fluorescent probes in biological diagnosis.展开更多
Twelve(+)-nopinone-based 2-amino-3-cyanopyridines 4a-1 were synthesized from(–)-β-pinene.The structures of these compounds were characterized by FT-IR,1H NMR,and ESI-MS.All the compounds were tested for their antica...Twelve(+)-nopinone-based 2-amino-3-cyanopyridines 4a-1 were synthesized from(–)-β-pinene.The structures of these compounds were characterized by FT-IR,1H NMR,and ESI-MS.All the compounds were tested for their anticancer activity against lung cancer cell line A549,gastric cancer cell line MKN45 and breast cancer cell line MCF7 by MTT method,respectively.The results showed that compounds 4f,4j and 4k had promising anticancer activity against these cancer cell lines,in particular,compound 4f exhibited broad-spectrum and highly efficient anticancer activity against cell lines A549,MKN45 and MCF7 with IC50 of 23.78,67.61 and 53.87μmol·L^(-1),respectively.The preliminary analysis of the structure activity relationship implied that the Br or Cl substituted group of the benzene ring in these derivatives significantly contributed to the anticancer activity.展开更多
A bulk polymerization monomer dehydroabietic acid-(2-acryloyloxy-ethoxy)-ethyl ester(DHADG-AC) was synthesized from dehydroabietic acid(DHA). The chemical structure of DHA-DG-AC was characterized by1~HNMR,(13)~CNMR, M...A bulk polymerization monomer dehydroabietic acid-(2-acryloyloxy-ethoxy)-ethyl ester(DHADG-AC) was synthesized from dehydroabietic acid(DHA). The chemical structure of DHA-DG-AC was characterized by1~HNMR,(13)~CNMR, MS and FT-IR. The kinetics of the bulk polymerization of DHA-DG-AC was investigated by Differential Scanning Calorimeter(DSC).Two kinds of kinetic model(nth-order model and autocatalytic model) were used to investigate the polymerization process. The results showed that the experim e nt al DSC c u r ve s w e r e c o n si st e nt wi th t he computational data generated by the autocatalytic kinetic model, and the value of E_a was 95.73 k J·mol^(–1).展开更多
Increased demand for liquid transportation fuels, environmental concerns and depletion of petroleum resources requires the development of efficient conversion technologies for production of second-generation biofuels ...Increased demand for liquid transportation fuels, environmental concerns and depletion of petroleum resources requires the development of efficient conversion technologies for production of second-generation biofuels from non-food resources. Thermochemical approaches hold great potential for conversion of lignocellulosic biomass into liquid fuels. Direct thermochemical processes convert biomass into liquid fuels in one step using heat and catalysts and have many advantages over indirect and biological processes, such as greater feedstock flexibility, integrated conversion of whole biomass, and lower operation costs. Several direct thermochemical processes are employed in the production of liquid biofuels depending on the nature of the feedstock properties: such as fast pyrolysis/liquefaction of lignocellulosic biomass for bio-oil, including upgrading methods, such as catalytic cracking and hydrogenation. Owing to the substantial amount of liquid fuels consumed by vehicular transport, converting biomass into drop-in liquid fuels may reduce the dependence of the fuel market on petroleumbased fuel products. In this review, we also summarize recent progress in technologies for large-scale equipment for direct thermochemical conversion. We focus on the technical aspects critical to commercialization of the technologies for production of liquid fuels from biomass,including feedstock type, cracking catalysts, catalytic cracking mechanisms, catalytic reactors, and biofuel properties. We also discuss future prospects for direct thermochemical conversion in biorefineries for the production of high grade biofuels.展开更多
Dehydrated castor oil was epoxidized using phosphoric acid as a catalyst and acetic acid peroxide as an oxidant to produce epoxidized castor oil(ECO). Ringopening polymerization with stannic chloride was used to produ...Dehydrated castor oil was epoxidized using phosphoric acid as a catalyst and acetic acid peroxide as an oxidant to produce epoxidized castor oil(ECO). Ringopening polymerization with stannic chloride was used to produce polymerized ECO(PECO), and sodium hydroxide used to give hydrolyzed PECO(HPECO). The HPECO was characterized by Fourier transform infrared,1H and13 Cnuclear magnetic resonance spectroscopies,gel permeation chromatography, and differential scanning calorimetry. The weight-average molecular weight of soluble PECO and HPECO were 5026 and2274 g$mol^(–1), respectively. PECO and HPECO exhibited glass transition. Through neutralizing the carboxylic acid of HPECO with different counterions, castor oil-based polymeric surfactants(HPECO-M, where M = Na^+, K^+or triethanolamine ion) exhibited high ef ficiency to reduce the surface tension of water. The critical micelle concentration(CMC) values of HPECO-M ranged from0.042 to 0.098 g$L^(–1)and the minimum equilibrium surface tensions at CMC(g cmc) of HPECO-M ranged from 25.6 to30.0 m N$m^(–1). The water-hexadecane interfacial energy was calculated from measured surface tension using harmonic and geometric mean methods. Measured values of water-hexadecane interfacial tension agreed well with those calculated using the harmonic and geometric mean methods.展开更多
基金supported by the National Natural Science Foundation of China(Grant Number 32260370)Youth Talent Project of Major Academic and Technical Leaders Training Program of Jiangxi Province(Grant Number 20204BCJL23045)+2 种基金Special Research Project on Camphor Tree(KRPCT)of Jiangxi Forestry Department(Grant Number 2020CXZX07)Innovative Leading Talent Short-Term Project in Natural Science Area of Jiangxi Province(Grant Number jxsq2018102072)the Key Research and Development Program of Jiangxi Province(Grant Number 20192BBFL60014).
文摘Turpentine is a renewable and resourceful forest product.The deep processing and utilization of turpentine,particularly its primary componentβ-pinene,has garnered widespread attention.This study aimed to synthesize 40 derivatives ofβ-pinene,including nopinone,3-cyanopyridines of nopinone,myrtanyl acid,myrtanyl acylthioureas,and myrtanyl amides.We assessed the antiviral activities of theseβ-pinene derivatives against influenza virus A/Puerto Rico/8/34(H1N1)using the 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method.Theβ-pinene derivatives were used before and after cellular infection with the influenza virus to evaluate their preventive and therapeutic effects against the H1N1 virus.The results showed that only compound 10o exhibited a preventive effect against the H1N1 virus with a half-maximal inhibitory concentration(IC50)value of 47.6μmol/L.Among the compounds,4e,4i,and 4l demonstrated therapeutic effects against cellular infection,with compound 4e displaying the most potent therapeutic effect(IC50=17.5μmol/L),comparable to the positive control ribavirin.These findings indicated that certainβ-pinene derivatives exhibited in vitro antiviral activity against the H1N1 influenza A virus,warranting further investigation as potential anti-influenza agents.
基金This work is financially supported by the Youth Talent Project of Major Academic and Technical Leaders Training Program of Jiangxi Province(Grant No.20204BCJL23045)the National Natural Science Foundation of China(Grant No.31800493)+1 种基金the Special Research Project on Camphor Tree(KRPCT)of Jiangxi Forestry Department(Grant No.2020CXZX07)the Innovative Leading Talent Short-Term Project in the Natural Science Area of Jiangxi Province(jxsq2018102072).
文摘The preparation of bioactive derivatives from the renewable natural product pinene is a hot research topic in the deep processing and utilization of pinene.In this study,β-pinene was used to develop novel molecules as a promising new precursor of insecticide.A series of amide-containing derivatives ofβ-pinene were synthesized and characterized.The insecticidal activities of these derivatives against Mythimna separate and Semiaphis heraclei were tested.The structure characterization results showed that the characterization data of amide-containing derivatives were in full agreement with their proposed structures.The insecticidal activities evaluation results indicated that amide-containing derivatives exhibited weak insecticidal activity against Mythimna separate,but exhibited moderate to good insecticidal activity against Semiaphis heraclei.After testing for 72 h,the corrected mortality against Semiaphis heraclei of compounds 5c,5e,5f,5 h,5j,and 5 m was 100%at 1000 mg/L.The structure-activity relationship analysis results showed that the introduction of an amide group into the structure of derivatives improved their insecticidal activity against Semiaphis heraclei.Meanwhile,the amide-containing derivatives containing the F and NO_(2) substituted benzene ring might improve their insecticidal activity against Semiaphis heraclei.This study will be helpful for the high value-added utilization of the natural renewable resourceβ-pinene and the development of novel insecticides.
基金supported by the National Natural Science Foundation of China (31670576)Introduction of the International Advanced Forestry Science and Technology Program (20154-44)
文摘A series of dehydroabietic acid-based diarylamines have been synthesized in order to investigate their fluorescent properties, photostability, cell toxicity and in vitro fluorescence imaging. The geometries as well as their molecular properties were optimized at the B3LYP/6-31G~* level using Gaussian 03. The results indicate that molecular geometry, HOMO and LUMO energies, and energy gaps are important to predict absorption and fluorescent properties. Five of the compounds can be effectively taken up by human cervical carcinoma, human hepatocellular carcinoma SMMC-7721, human gastric cancer SGC-7901 and human lung adenocarcinoma A549 cells and strong blue fluorescent signals are detected in these cells. These compounds are potential candidates for fluorescent probes in biological diagnosis.
基金This work was supported by the Joint Funds of the National Natural Science Foundation of China and Yunnan Provincial Government(U1202265).
文摘Twelve(+)-nopinone-based 2-amino-3-cyanopyridines 4a-1 were synthesized from(–)-β-pinene.The structures of these compounds were characterized by FT-IR,1H NMR,and ESI-MS.All the compounds were tested for their anticancer activity against lung cancer cell line A549,gastric cancer cell line MKN45 and breast cancer cell line MCF7 by MTT method,respectively.The results showed that compounds 4f,4j and 4k had promising anticancer activity against these cancer cell lines,in particular,compound 4f exhibited broad-spectrum and highly efficient anticancer activity against cell lines A549,MKN45 and MCF7 with IC50 of 23.78,67.61 and 53.87μmol·L^(-1),respectively.The preliminary analysis of the structure activity relationship implied that the Br or Cl substituted group of the benzene ring in these derivatives significantly contributed to the anticancer activity.
基金supported by the National Natural Science Foundation of China (31470597)
文摘A bulk polymerization monomer dehydroabietic acid-(2-acryloyloxy-ethoxy)-ethyl ester(DHADG-AC) was synthesized from dehydroabietic acid(DHA). The chemical structure of DHA-DG-AC was characterized by1~HNMR,(13)~CNMR, MS and FT-IR. The kinetics of the bulk polymerization of DHA-DG-AC was investigated by Differential Scanning Calorimeter(DSC).Two kinds of kinetic model(nth-order model and autocatalytic model) were used to investigate the polymerization process. The results showed that the experim e nt al DSC c u r ve s w e r e c o n si st e nt wi th t he computational data generated by the autocatalytic kinetic model, and the value of E_a was 95.73 k J·mol^(–1).
基金the National Natural Science Foundation of China(31422013)the Research Institute of New Technology,Special Fund for Fundamental Research(CAFYBB2014ZD003)for financial support during this investigation
文摘Increased demand for liquid transportation fuels, environmental concerns and depletion of petroleum resources requires the development of efficient conversion technologies for production of second-generation biofuels from non-food resources. Thermochemical approaches hold great potential for conversion of lignocellulosic biomass into liquid fuels. Direct thermochemical processes convert biomass into liquid fuels in one step using heat and catalysts and have many advantages over indirect and biological processes, such as greater feedstock flexibility, integrated conversion of whole biomass, and lower operation costs. Several direct thermochemical processes are employed in the production of liquid biofuels depending on the nature of the feedstock properties: such as fast pyrolysis/liquefaction of lignocellulosic biomass for bio-oil, including upgrading methods, such as catalytic cracking and hydrogenation. Owing to the substantial amount of liquid fuels consumed by vehicular transport, converting biomass into drop-in liquid fuels may reduce the dependence of the fuel market on petroleumbased fuel products. In this review, we also summarize recent progress in technologies for large-scale equipment for direct thermochemical conversion. We focus on the technical aspects critical to commercialization of the technologies for production of liquid fuels from biomass,including feedstock type, cracking catalysts, catalytic cracking mechanisms, catalytic reactors, and biofuel properties. We also discuss future prospects for direct thermochemical conversion in biorefineries for the production of high grade biofuels.
基金support provided by the Natural Science Foundation of Jiangsu Province of China (BK2012063, BK20140973)the National Natural Science Foundation of China (31200446)
文摘Dehydrated castor oil was epoxidized using phosphoric acid as a catalyst and acetic acid peroxide as an oxidant to produce epoxidized castor oil(ECO). Ringopening polymerization with stannic chloride was used to produce polymerized ECO(PECO), and sodium hydroxide used to give hydrolyzed PECO(HPECO). The HPECO was characterized by Fourier transform infrared,1H and13 Cnuclear magnetic resonance spectroscopies,gel permeation chromatography, and differential scanning calorimetry. The weight-average molecular weight of soluble PECO and HPECO were 5026 and2274 g$mol^(–1), respectively. PECO and HPECO exhibited glass transition. Through neutralizing the carboxylic acid of HPECO with different counterions, castor oil-based polymeric surfactants(HPECO-M, where M = Na^+, K^+or triethanolamine ion) exhibited high ef ficiency to reduce the surface tension of water. The critical micelle concentration(CMC) values of HPECO-M ranged from0.042 to 0.098 g$L^(–1)and the minimum equilibrium surface tensions at CMC(g cmc) of HPECO-M ranged from 25.6 to30.0 m N$m^(–1). The water-hexadecane interfacial energy was calculated from measured surface tension using harmonic and geometric mean methods. Measured values of water-hexadecane interfacial tension agreed well with those calculated using the harmonic and geometric mean methods.