Silicon carbide(SiC) is a promising platform for fabricating high-voltage, high-frequency and high-temperature electronic devices such as metal oxide semiconductor field effect transistors in which many junctions or i...Silicon carbide(SiC) is a promising platform for fabricating high-voltage, high-frequency and high-temperature electronic devices such as metal oxide semiconductor field effect transistors in which many junctions or interfaces are involved. The work function(WF) plays an essential role in these devices. However, studies of the effect of conductive type and polar surfaces on the WF of SiC are limited. Here, we report the measurement of WFs of Si-and C-terminated polar surfaces for both p-type and n-type conductive 4H-SiC single crystals by scanning Kelvin probe microscopy(SKPFM). The results show that p-type SiC exhibits a higher WF than n-type SiC.The WF of a C-terminated polar surface is higher than that of a Si-terminated polar surface, which is further confirmed by first-principles calculations. By revealing this long-standing knowledge gap, our work facilitates the fabrication and development of SiC-based electronic devices, which have tremendous potential applications in electric vehicles, photovoltaics, and so on. This work also shows that SKPFM is a good method for identifying polar surfaces of SiC and other polar materials nondestructively, quickly and conveniently.展开更多
To achieve the monitor of rock burst in coal mine with fiber Bragg grating (FBG) sensing, the coupling mechanism between FBG and shock waves w<span style="font-family:;" "="">as</span...To achieve the monitor of rock burst in coal mine with fiber Bragg grating (FBG) sensing, the coupling mechanism between FBG and shock waves w<span style="font-family:;" "="">as</span><span style="font-family:;" "=""> theoretically analyzed. Based on Housner’s random shock model, the coupling mechanism between shock waves and FBG was theoretically analyzed. The result shows that the wave will change the period </span><span><span style="white-space:nowrap;">Ʌ</span></span><span style="font-family:;" "=""> and effective refractive index </span><i><span style="font-family:;" "="">n</span></i><span style="font-family:;" "=""> of FBG, and further affect the initial wavelength value. The amplitude, phase and frequency of shock wave are directly related to the wavelength drifts of FBG. The transmitting velocity of shock wave in rock is affected by lithologic characteristics. The Elastic modulus, density and Poisson’s ratio of rock influence the initial wavelength value of FBG. This study provided a theoretical basis and practical application guidance for coal or rock burst monitoring with FBG sensing.</span>展开更多
基金financially supported by the Beijing Municipal Science and Technology Project (Grant No. Z231100006023015)the Major Scientific and Technological Research and Development of Shunyi District of Beijingthe Chinese Academy of Sciences。
文摘Silicon carbide(SiC) is a promising platform for fabricating high-voltage, high-frequency and high-temperature electronic devices such as metal oxide semiconductor field effect transistors in which many junctions or interfaces are involved. The work function(WF) plays an essential role in these devices. However, studies of the effect of conductive type and polar surfaces on the WF of SiC are limited. Here, we report the measurement of WFs of Si-and C-terminated polar surfaces for both p-type and n-type conductive 4H-SiC single crystals by scanning Kelvin probe microscopy(SKPFM). The results show that p-type SiC exhibits a higher WF than n-type SiC.The WF of a C-terminated polar surface is higher than that of a Si-terminated polar surface, which is further confirmed by first-principles calculations. By revealing this long-standing knowledge gap, our work facilitates the fabrication and development of SiC-based electronic devices, which have tremendous potential applications in electric vehicles, photovoltaics, and so on. This work also shows that SKPFM is a good method for identifying polar surfaces of SiC and other polar materials nondestructively, quickly and conveniently.
文摘To achieve the monitor of rock burst in coal mine with fiber Bragg grating (FBG) sensing, the coupling mechanism between FBG and shock waves w<span style="font-family:;" "="">as</span><span style="font-family:;" "=""> theoretically analyzed. Based on Housner’s random shock model, the coupling mechanism between shock waves and FBG was theoretically analyzed. The result shows that the wave will change the period </span><span><span style="white-space:nowrap;">Ʌ</span></span><span style="font-family:;" "=""> and effective refractive index </span><i><span style="font-family:;" "="">n</span></i><span style="font-family:;" "=""> of FBG, and further affect the initial wavelength value. The amplitude, phase and frequency of shock wave are directly related to the wavelength drifts of FBG. The transmitting velocity of shock wave in rock is affected by lithologic characteristics. The Elastic modulus, density and Poisson’s ratio of rock influence the initial wavelength value of FBG. This study provided a theoretical basis and practical application guidance for coal or rock burst monitoring with FBG sensing.</span>