Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM ...Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM process often leads to quality fluctuation of the formed component,which hinders the further development and application of SLM.In situ quality control during SLM process is an effective solution to the quality fluctuation of formed components.However,the basic premise of feedback control during SLM process is the rapid and accurate diagnosis of the quality.Therefore,an in situ monitoring method of SLM process,which provides quality diagnosis information for feedback control,became one of the research hotspots in this field in recent years.In this paper,the research progress of in situ monitoring during SLM process based on images is reviewed.Firstly,the significance of in situ monitoring during SLM process is analyzed.Then,the image information source of SLM process,the image acquisition systems for different detection objects(the molten pool region,the scanned layer and the powder spread layer)and the methods of the image information analysis,detection and recognition are reviewed and analyzed.Through review and analysis,it is found that the existing image analysis and detection methods during SLM process are mainly based on traditional image processing methods combined with traditional machine learning models.Finally,the main development direction of in situ monitoring during SLM process is proposed by combining with the frontier technology of image-based computer vision.展开更多
The as-spun Ti_(1−x)La_(x)Fe_(0.8)Mn_(0.2)(x=0,0.01,0.03,0.06,0.09,molar fraction)alloys were prepared by melt spinning.The effects of La substitution for Ti on the microstructure,hydrogen storage kinetics and thermod...The as-spun Ti_(1−x)La_(x)Fe_(0.8)Mn_(0.2)(x=0,0.01,0.03,0.06,0.09,molar fraction)alloys were prepared by melt spinning.The effects of La substitution for Ti on the microstructure,hydrogen storage kinetics and thermodynamics of TiFe-type Ti−Fe−Mn-based alloy were investigated.The as-spun alloys hold the TiFe single phase,which transforms to TiFeH_(0.06),TiFeH,and TiFeH_(2) hydrides after hydrogenation.La substitution promotes the formation of micro-defects(such as dislocations and grain boundaries)in the alloys,thus facilitating hydrogen diffusion.In addition,the hydrogen storage kinetics properties are improved after introducing La element.With the rise of La content,the hydrogen storage capacity decreases firstly and then increases,but the absolute value of hydriding enthalpy change(|ΔH|)increases firstly and then reduces.When x=0.01,the maximum value of|ΔH|is obtained to be(25.23±0.50)kJ/mol for hydriding,and the alloy has the maximum hydrogen absorption capacity of(1.80±0.04)wt.%under the conditions of 323 K and 3 MPa.展开更多
LaMgNi(4-x)Cox(x = 0-0.8) electrode alloys used for MH/Ni batteries were prepared by induction melting. The structures and electrochemical hydrogen storage properties of the alloys were investigated in detail.X-ra...LaMgNi(4-x)Cox(x = 0-0.8) electrode alloys used for MH/Ni batteries were prepared by induction melting. The structures and electrochemical hydrogen storage properties of the alloys were investigated in detail.X-ray diffraction(XRD) and scanning electron microscopy(SEM) analysis show that LaMgNi4 phase and LaNi5 phase are obtained. The lattice parameters of the two phases increase first and then decrease with Co content increasing.The electrochemical properties of the alloy electrodes were measured by means of simulated battery tests. Results show that the addition of Co does not change the discharge voltage plateau of the alloy electrodes. However, the maximum discharge capacity increases from 319.9 mAh·g^-1(x = 0)to 347.5 mAh·g^-1(x = 0.4) and then decreases to331.7 mAh·g^-1(x = 0.8). The effects of Co content on electrochemical kinetics of the alloy electrodes were also performed. The high rate dischargeability(HRD) first increases and then decreases with Co content increasing and reaches the maximum value(95.0 %) when x = 0.4. Test results of the electrochemical impedance spectra(EIS),potentiodynamic polarization curves and constant potential step measurements of the alloy electrodes all demonstrate that when Co content is 0.4 at%, the alloy exhibits the best comprehensive electrochemical properties.展开更多
The microstructure, hydrogen storage thermodynamics and kinetics of La5Mg95-xNix (x=5, 10, 15) ternary alloys with different Ni contents were investigated. The evolutions of the microstructure and phase of experimenta...The microstructure, hydrogen storage thermodynamics and kinetics of La5Mg95-xNix (x=5, 10, 15) ternary alloys with different Ni contents were investigated. The evolutions of the microstructure and phase of experimental alloys were characterized by X-ray diffractometry and scanning electron microscopy. The hydrogen storage kinetics and thermodynamics, and P-C-I curves were tested using a Sievert apparatus. It is found that increasing Ni content remarkably improves hydrogen storage kinetics but reduces the hydrogen storage capacity of alloys. The highest hydrogen absorption/desorption rate is observed in the La5Mg80Ni15 alloy, with the lowest hydrogen desorption activation value being 57.7 kJ/mol. By means of P-C-I curves and the van’t Hoff equation, it is determined that the thermodynamic performance of the alloy is initially improved and then degraded with increasing Ni content. The La5Mg85Ni10 alloy has the best thermodynamics properties with a hydrogenation enthalpy of -72.1 kJ/mol and hydrogenation entropy of -123.2 J/(mol·K).展开更多
The as-cast RE-Mg-Ni-b ased AB2-type La1-xPrxMgNi3.6Co0.4(x=0-0.4)alloys were prepared by vacuum induction melting followed by annealing treatment.The phase composition and structure were characterized by X-ray diffra...The as-cast RE-Mg-Ni-b ased AB2-type La1-xPrxMgNi3.6Co0.4(x=0-0.4)alloys were prepared by vacuum induction melting followed by annealing treatment.The phase composition and structure were characterized by X-ray diffraction(XRD)and scanning electron microscope(SEM).The results show that LaMgNi4 and LaNi5 coexist in as-cast alloys,but only LaMgNi4 is detected in the annealed alloys.The morphology of annealed alloys is more homogeneous than that of as-cast alloys.The gaseous hydrogen storage and electrochemical properties were investigated by pressure-composition isotherm(P-C-T)and electrochemical measurements.The P-C-T curves of annealed alloys show flatter and wider pressure plateaus corresponding to absorption/desorption pressure plateaus of LaMgNi4 hydride.But the maximum hydrogen storage content of annealed alloys is lower than that of as-cast alloys.In consideration of the electrochemical properties,the annealed La0.8Pr0.2MgNi3.6Co0.4alloy exhibits a maximum discharge capacity of354.2 mAh·g-1.展开更多
Preparation of La-Mg-Ni-Co-Al-based AB2-type alloys La0.8-xCe0.2YxMgNi3.4Co0.4Al0.1(x=0,0.05,0.10,0.15,0.20)was performed using melt spinning technology.The influences of spun rate and Y content on structures and elec...Preparation of La-Mg-Ni-Co-Al-based AB2-type alloys La0.8-xCe0.2YxMgNi3.4Co0.4Al0.1(x=0,0.05,0.10,0.15,0.20)was performed using melt spinning technology.The influences of spun rate and Y content on structures and electrochemical hydrogen storage characteristics were studied.The base phase LaMgNi4 and the lesser phase LaNis were detected by X-ray diffraction(XRD)and scanning electron microscope(SEM).The variations of spinning rate and Y content cause an obvious change in phase content,but without altering phase composition,namely,with spinning rate and Y content growing,LaMgNi4 phase content augments while LaNi5 content declines.Furthermore,melt spinning and the replacing La by Y refine the grains dramatically.The electrochemical tests show a favorable activation capability of the two kinds of alloys,and the maximum discharge capacities are achieved during the first cycle.Discharge capacity firstly increases and subsequently decreases with spinning rate rising,while cycle stability is ameliorated and discharge capacity decreases with Y addition increasing.It is found that the amelioration of cycle stability is due to the enhancement of anti-pulverization,anti-corrosion and antioxidation abilities by both replacement of La with Y and melt spinning.Moreover,with the increase of Y addition and/or spinning rate,the electrochemical kinetics that contain charge transfer rate,limiting current density(IL),hydrogen diffusion coefficient(D)and the high rate discharge ability(HRD)firstly augment and then reduce.展开更多
Hydrogen,as a secure,clean,efficient,and available energy source,will be successfully applied to reduce and eliminate greenhouse gas emissions.Hydrogen storage technology,which is one of the key challenges in developi...Hydrogen,as a secure,clean,efficient,and available energy source,will be successfully applied to reduce and eliminate greenhouse gas emissions.Hydrogen storage technology,which is one of the key challenges in developing hydrogen economy,will be solved through the unremitting efforts of scientists.The progress on hydrogen storage technology research and recent developments in hydrogen storage materials is reported.Commonly used storage methods,such as high-pressure gas or liquid,cannot satisfy future storage requirement.Hence,relatively advanced storage methods,such as the use of metal-organic framework hydrides and carbon materials,are being developed as promising alternatives.Combining chemical and physical hydrogen storage in certain materials has potential advantages among all storage methods.Intensive research has been conducted on metal hydrides to improve their electrochemical and gaseous hydrogen storage properties,including their hydrogen storage capacity,kinetics,cycle stability,pressure,and thermal response,which are dependent on the composition and structural feature of alloys.Efforts have been exerted on a group of magnesium-based hydrides,as promising candidates for competitive hydrogen storage,to decrease their desorption temperature and enhance their kinetics and cycle life.Further research is necessary to achieve the goal of practical application by adding an appropriate catalyst and through rapid quenching or ball milling.Improving the kinetics and cycle life of complex hydrides is also an important aspect for potential applications of hydrogen energy.展开更多
Melt spinning (MS) and ball milling (BM) were employed to fabricate YMg11Ni alloy, and their structures and hydrogen storage performances were examined. The results reveal that the as-spun and as-milled alloys bot...Melt spinning (MS) and ball milling (BM) were employed to fabricate YMg11Ni alloy, and their structures and hydrogen storage performances were examined. The results reveal that the as-spun and as-milled alloys both exhibit the nanocrystalline and amorphous structure. The as-milled alloy shows a larger hydrogen absorption capacity as compared with the as-spun alloy. More than that, the as-milled alloy exhibits lower onset hydrogen desorption temperature than the as-spun one, which are 549.8 and 560.9 K, respectively. Additionally, the as-milled alloy shows a superior hydrogen desorption property to the as-spun one. On the basis of the time needed by desorbing hydrogen of 3 wt% H2, for the as- milled alloy, it needs 1106, 456, 343, and 180 s corresponding to hydrogen desorption temperatures of 593, 613, 633, and 653 K. However, for the as-spun alloy, the time needed is greater than 2928, 842, 356, and 197 s corresponding to the same temperatures. Hydrogen desorption activation energies of as-milled and as-spun alloys are 98.01 and 105.49 kJ/mol, respectively, which is responsible for that the as-milled alloy possesses a much faster dehydriding rate. By means of the measurement of pressure-composition-temperature (P-C-T) curves, the dehydrogenation enthalpy change of the alloys prepared by MS (△Hoe(MS)) and BM (△Hdc(BM)) is 81.84 and 79.46 kJ/mol, respectively, viz. △Hde(MS) 〉 △Hoc(BM).展开更多
After being activated,TiFe alloys are widely concerned for their high hydrogen storage density due to their large reversible absorption and desorption capacity of hydrogen at room temperature,low price,abundant resour...After being activated,TiFe alloys are widely concerned for their high hydrogen storage density due to their large reversible absorption and desorption capacity of hydrogen at room temperature,low price,abundant resources,moderate hydride decomposition pressure,and good hydrogen absorption and desorption kinetic performance.Meanwhile,TiFe alloys can be used as anode materials for secondary batteries,catalysts for hydrogenation,and storage media for thermal,solar,and wind energy,which has wide industrial application prospects.However,TiFe alloys have disadvantages such as difficult activation,easy toxicity,and large hysteresis.This review introduces the current research status and performance characteristics of TiFe-based hydrogen storage alloys,the phase structure,hydride phase structure,kinetic and thermodynamic models of TiFe alloys,as well as the application prospects of TiFe-based hydrogen storage alloys in practical production and the ways to improve their hydrogen storage performance,and presents the views on the future research priorities and development directions of TiFe-based hydrogen storage alloys.展开更多
To compare the hydrogen storage performances of as-milled REMg11Ni-5MoS2(mass fraction)(RE=Y,Sm)alloys,which were catalyzed by MoS2,the corresponding alloys were prepared.The hydrogen storage performaces of these allo...To compare the hydrogen storage performances of as-milled REMg11Ni-5MoS2(mass fraction)(RE=Y,Sm)alloys,which were catalyzed by MoS2,the corresponding alloys were prepared.The hydrogen storage performaces of these alloys were measured by various methods,such as XRD,TEM,automatic Sievert apparatus,TG and DSC.The results reveal that both of the as-milled alloys exhibit a nanocrystalline and amorphous structure.The RE=Y alloy shows a larger hydrogen absorption capacity,faster hydriding rate,lower initial hydrogen desorption temperature,superior hydrogen desorption property,and lower hydrogen desorption activation energy,which is thought to be the reason of its better hydrogen storage kinetics,as compared with RE=Sm alloy.展开更多
La0.8Pr0.2MgNi3.6Co0.4 alloys were prepared by induction melting,annealing and melt spinning techniques.The influences of annealing treatment and melt spinning on phase structure and hydrogen storage properties were s...La0.8Pr0.2MgNi3.6Co0.4 alloys were prepared by induction melting,annealing and melt spinning techniques.The influences of annealing treatment and melt spinning on phase structure and hydrogen storage properties were systematically investigated.The results of X-ray diffraction determine that the as-cast and as-spun La0.8Pr0.2MgNi3.6Co0.4 alloys consist of LaMgNi4 and LaNi5 phases,while only LaMgNi4 phase is present in the as-annealed alloy.The scanning electron microscope images illustrate that the grain of the alloy is significantly refined by melt spin ning tech no logy.The gaseous hydrogen storage kinetic and thermodynamic properties were measured by using a Sievert's apparatus at different temperatures.The maximum hydrogen storage capacity of the as-cast,as?spun and as-annealed La0.8Pr0.2MgNi3.6Co0.4 alloy is 1.699,1.637 and 1.535 wt.% at 373 K and 3 MPa,respectively.The annealed alloy has flatter and wider pressure plateaus compared with the as-cast and as-spun alloys,which correspond to the hydrogen absorption and desorption process of LaMgNi4 and corresponding hydride.Furthermore,the enthalpy and entropy changes of LaMgNi4 during hydrogenation at different temperatures were calculated using Van't Hoff methods.展开更多
Two Li-rich candidates,TYC 1338-1410-1 and TYC 2825-596-1,were observed by the new high-resolution echelle spectrograph,LAMOST/HRS.Based on their high-resolution and high-signal-tonoise ratio(SNR)spectra,we derived st...Two Li-rich candidates,TYC 1338-1410-1 and TYC 2825-596-1,were observed by the new high-resolution echelle spectrograph,LAMOST/HRS.Based on their high-resolution and high-signal-tonoise ratio(SNR)spectra,we derived stellar parameters and abundances of 14 important elements for the two candidates.The stellar parameters and lithium abundances indicate that they are Li-rich K-type giants,and having A(Li)NLTE and 2.91 dex,respectively.Our analysis suggests that TYC 1338-1410-1 is probably a red giant branch(RGB)star at the bump stage,while TYC 2825-596-1 is most likely to be a core helium-burning red clump(RC)star.The line profiles of both spectra indicate that the two Li-rich giants are slow rotators and do not show infrared(IR)excess.We conclude that engulfment is not the lithium enrichment mechanism for either star.The enriched lithium of TYC 1338-1410-1 could be created via the Cameron-Fowler mechanism,while the lithium excess in TYC 2825-596-1 could be associated with either non-canonical mixing processes or He-flash.展开更多
基金financially supported by the KGW Program(Grant No.2019XXX.XX4007Tm)the National Natural Science Foundation of China(Grant Nos.51905188,52090042 and 51775205)。
文摘Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM process often leads to quality fluctuation of the formed component,which hinders the further development and application of SLM.In situ quality control during SLM process is an effective solution to the quality fluctuation of formed components.However,the basic premise of feedback control during SLM process is the rapid and accurate diagnosis of the quality.Therefore,an in situ monitoring method of SLM process,which provides quality diagnosis information for feedback control,became one of the research hotspots in this field in recent years.In this paper,the research progress of in situ monitoring during SLM process based on images is reviewed.Firstly,the significance of in situ monitoring during SLM process is analyzed.Then,the image information source of SLM process,the image acquisition systems for different detection objects(the molten pool region,the scanned layer and the powder spread layer)and the methods of the image information analysis,detection and recognition are reviewed and analyzed.Through review and analysis,it is found that the existing image analysis and detection methods during SLM process are mainly based on traditional image processing methods combined with traditional machine learning models.Finally,the main development direction of in situ monitoring during SLM process is proposed by combining with the frontier technology of image-based computer vision.
基金financial supports from the Inner Mongolia Natural Science Foundation,China (No.2019BS05005)the Inner Mongolia University of Science and Technology Innovation Fund,China (No.2019QDL-B11)the National Natural Science Foundation of China (Nos.51901105, 51871125, 51761032).
文摘The as-spun Ti_(1−x)La_(x)Fe_(0.8)Mn_(0.2)(x=0,0.01,0.03,0.06,0.09,molar fraction)alloys were prepared by melt spinning.The effects of La substitution for Ti on the microstructure,hydrogen storage kinetics and thermodynamics of TiFe-type Ti−Fe−Mn-based alloy were investigated.The as-spun alloys hold the TiFe single phase,which transforms to TiFeH_(0.06),TiFeH,and TiFeH_(2) hydrides after hydrogenation.La substitution promotes the formation of micro-defects(such as dislocations and grain boundaries)in the alloys,thus facilitating hydrogen diffusion.In addition,the hydrogen storage kinetics properties are improved after introducing La element.With the rise of La content,the hydrogen storage capacity decreases firstly and then increases,but the absolute value of hydriding enthalpy change(|ΔH|)increases firstly and then reduces.When x=0.01,the maximum value of|ΔH|is obtained to be(25.23±0.50)kJ/mol for hydriding,and the alloy has the maximum hydrogen absorption capacity of(1.80±0.04)wt.%under the conditions of 323 K and 3 MPa.
基金financially supported by the National Natural Science Foundations of China (Nos.51161015,51371094 and 51471054)
文摘LaMgNi(4-x)Cox(x = 0-0.8) electrode alloys used for MH/Ni batteries were prepared by induction melting. The structures and electrochemical hydrogen storage properties of the alloys were investigated in detail.X-ray diffraction(XRD) and scanning electron microscopy(SEM) analysis show that LaMgNi4 phase and LaNi5 phase are obtained. The lattice parameters of the two phases increase first and then decrease with Co content increasing.The electrochemical properties of the alloy electrodes were measured by means of simulated battery tests. Results show that the addition of Co does not change the discharge voltage plateau of the alloy electrodes. However, the maximum discharge capacity increases from 319.9 mAh·g^-1(x = 0)to 347.5 mAh·g^-1(x = 0.4) and then decreases to331.7 mAh·g^-1(x = 0.8). The effects of Co content on electrochemical kinetics of the alloy electrodes were also performed. The high rate dischargeability(HRD) first increases and then decreases with Co content increasing and reaches the maximum value(95.0 %) when x = 0.4. Test results of the electrochemical impedance spectra(EIS),potentiodynamic polarization curves and constant potential step measurements of the alloy electrodes all demonstrate that when Co content is 0.4 at%, the alloy exhibits the best comprehensive electrochemical properties.
基金Projects(51761032,51471054) supported by the National Natural Science Foundation of China
文摘The microstructure, hydrogen storage thermodynamics and kinetics of La5Mg95-xNix (x=5, 10, 15) ternary alloys with different Ni contents were investigated. The evolutions of the microstructure and phase of experimental alloys were characterized by X-ray diffractometry and scanning electron microscopy. The hydrogen storage kinetics and thermodynamics, and P-C-I curves were tested using a Sievert apparatus. It is found that increasing Ni content remarkably improves hydrogen storage kinetics but reduces the hydrogen storage capacity of alloys. The highest hydrogen absorption/desorption rate is observed in the La5Mg80Ni15 alloy, with the lowest hydrogen desorption activation value being 57.7 kJ/mol. By means of P-C-I curves and the van’t Hoff equation, it is determined that the thermodynamic performance of the alloy is initially improved and then degraded with increasing Ni content. The La5Mg85Ni10 alloy has the best thermodynamics properties with a hydrogenation enthalpy of -72.1 kJ/mol and hydrogenation entropy of -123.2 J/(mol·K).
基金financially supported by the National Natural Science Foundations of China(Nos.51161015 and 51371094)the Natural Science Foundation of Inner Mongolia, China (No. 2011ZD10)
文摘The as-cast RE-Mg-Ni-b ased AB2-type La1-xPrxMgNi3.6Co0.4(x=0-0.4)alloys were prepared by vacuum induction melting followed by annealing treatment.The phase composition and structure were characterized by X-ray diffraction(XRD)and scanning electron microscope(SEM).The results show that LaMgNi4 and LaNi5 coexist in as-cast alloys,but only LaMgNi4 is detected in the annealed alloys.The morphology of annealed alloys is more homogeneous than that of as-cast alloys.The gaseous hydrogen storage and electrochemical properties were investigated by pressure-composition isotherm(P-C-T)and electrochemical measurements.The P-C-T curves of annealed alloys show flatter and wider pressure plateaus corresponding to absorption/desorption pressure plateaus of LaMgNi4 hydride.But the maximum hydrogen storage content of annealed alloys is lower than that of as-cast alloys.In consideration of the electrochemical properties,the annealed La0.8Pr0.2MgNi3.6Co0.4alloy exhibits a maximum discharge capacity of354.2 mAh·g-1.
基金financially supported by the National Natural Science Foundations of China(Nos.51761032,51871125 and 51471054).
文摘Preparation of La-Mg-Ni-Co-Al-based AB2-type alloys La0.8-xCe0.2YxMgNi3.4Co0.4Al0.1(x=0,0.05,0.10,0.15,0.20)was performed using melt spinning technology.The influences of spun rate and Y content on structures and electrochemical hydrogen storage characteristics were studied.The base phase LaMgNi4 and the lesser phase LaNis were detected by X-ray diffraction(XRD)and scanning electron microscope(SEM).The variations of spinning rate and Y content cause an obvious change in phase content,but without altering phase composition,namely,with spinning rate and Y content growing,LaMgNi4 phase content augments while LaNi5 content declines.Furthermore,melt spinning and the replacing La by Y refine the grains dramatically.The electrochemical tests show a favorable activation capability of the two kinds of alloys,and the maximum discharge capacities are achieved during the first cycle.Discharge capacity firstly increases and subsequently decreases with spinning rate rising,while cycle stability is ameliorated and discharge capacity decreases with Y addition increasing.It is found that the amelioration of cycle stability is due to the enhancement of anti-pulverization,anti-corrosion and antioxidation abilities by both replacement of La with Y and melt spinning.Moreover,with the increase of Y addition and/or spinning rate,the electrochemical kinetics that contain charge transfer rate,limiting current density(IL),hydrogen diffusion coefficient(D)and the high rate discharge ability(HRD)firstly augment and then reduce.
基金Sponsored by National Natural Science Foundation of China(51161015,51371094)
文摘Hydrogen,as a secure,clean,efficient,and available energy source,will be successfully applied to reduce and eliminate greenhouse gas emissions.Hydrogen storage technology,which is one of the key challenges in developing hydrogen economy,will be solved through the unremitting efforts of scientists.The progress on hydrogen storage technology research and recent developments in hydrogen storage materials is reported.Commonly used storage methods,such as high-pressure gas or liquid,cannot satisfy future storage requirement.Hence,relatively advanced storage methods,such as the use of metal-organic framework hydrides and carbon materials,are being developed as promising alternatives.Combining chemical and physical hydrogen storage in certain materials has potential advantages among all storage methods.Intensive research has been conducted on metal hydrides to improve their electrochemical and gaseous hydrogen storage properties,including their hydrogen storage capacity,kinetics,cycle stability,pressure,and thermal response,which are dependent on the composition and structural feature of alloys.Efforts have been exerted on a group of magnesium-based hydrides,as promising candidates for competitive hydrogen storage,to decrease their desorption temperature and enhance their kinetics and cycle life.Further research is necessary to achieve the goal of practical application by adding an appropriate catalyst and through rapid quenching or ball milling.Improving the kinetics and cycle life of complex hydrides is also an important aspect for potential applications of hydrogen energy.
基金financially supported by the National Natural Science Foundations of China(Nos.51371094 and 51471054)the Natural Science Foundation of Inner Mongolia,China(No.2015MS0558)
文摘Melt spinning (MS) and ball milling (BM) were employed to fabricate YMg11Ni alloy, and their structures and hydrogen storage performances were examined. The results reveal that the as-spun and as-milled alloys both exhibit the nanocrystalline and amorphous structure. The as-milled alloy shows a larger hydrogen absorption capacity as compared with the as-spun alloy. More than that, the as-milled alloy exhibits lower onset hydrogen desorption temperature than the as-spun one, which are 549.8 and 560.9 K, respectively. Additionally, the as-milled alloy shows a superior hydrogen desorption property to the as-spun one. On the basis of the time needed by desorbing hydrogen of 3 wt% H2, for the as- milled alloy, it needs 1106, 456, 343, and 180 s corresponding to hydrogen desorption temperatures of 593, 613, 633, and 653 K. However, for the as-spun alloy, the time needed is greater than 2928, 842, 356, and 197 s corresponding to the same temperatures. Hydrogen desorption activation energies of as-milled and as-spun alloys are 98.01 and 105.49 kJ/mol, respectively, which is responsible for that the as-milled alloy possesses a much faster dehydriding rate. By means of the measurement of pressure-composition-temperature (P-C-T) curves, the dehydrogenation enthalpy change of the alloys prepared by MS (△Hoe(MS)) and BM (△Hdc(BM)) is 81.84 and 79.46 kJ/mol, respectively, viz. △Hde(MS) 〉 △Hoc(BM).
基金National Natural Science Foundation of China(51761032)Natural Science Foundation of Inner Mongolia,China(No.2019BS05005)Inner Mongolia University of Science and Technology Innovation Fund-(2019QDL-B11).
文摘After being activated,TiFe alloys are widely concerned for their high hydrogen storage density due to their large reversible absorption and desorption capacity of hydrogen at room temperature,low price,abundant resources,moderate hydride decomposition pressure,and good hydrogen absorption and desorption kinetic performance.Meanwhile,TiFe alloys can be used as anode materials for secondary batteries,catalysts for hydrogenation,and storage media for thermal,solar,and wind energy,which has wide industrial application prospects.However,TiFe alloys have disadvantages such as difficult activation,easy toxicity,and large hysteresis.This review introduces the current research status and performance characteristics of TiFe-based hydrogen storage alloys,the phase structure,hydride phase structure,kinetic and thermodynamic models of TiFe alloys,as well as the application prospects of TiFe-based hydrogen storage alloys in practical production and the ways to improve their hydrogen storage performance,and presents the views on the future research priorities and development directions of TiFe-based hydrogen storage alloys.
基金Projects(51761032,51471054,51871125)supported by the National Natural Science Foundation of China
文摘To compare the hydrogen storage performances of as-milled REMg11Ni-5MoS2(mass fraction)(RE=Y,Sm)alloys,which were catalyzed by MoS2,the corresponding alloys were prepared.The hydrogen storage performaces of these alloys were measured by various methods,such as XRD,TEM,automatic Sievert apparatus,TG and DSC.The results reveal that both of the as-milled alloys exhibit a nanocrystalline and amorphous structure.The RE=Y alloy shows a larger hydrogen absorption capacity,faster hydriding rate,lower initial hydrogen desorption temperature,superior hydrogen desorption property,and lower hydrogen desorption activation energy,which is thought to be the reason of its better hydrogen storage kinetics,as compared with RE=Sm alloy.
基金This work was financially supported by the National Natural Science Foundation of China(51901105,51871125 and 51761032)Inner Mongolia Natural Science Foundation(2017BS0507 and 2019BS05005)Inner Mongolia University of Science and Technology Innovation Fund(2016QDL-B02).
文摘La0.8Pr0.2MgNi3.6Co0.4 alloys were prepared by induction melting,annealing and melt spinning techniques.The influences of annealing treatment and melt spinning on phase structure and hydrogen storage properties were systematically investigated.The results of X-ray diffraction determine that the as-cast and as-spun La0.8Pr0.2MgNi3.6Co0.4 alloys consist of LaMgNi4 and LaNi5 phases,while only LaMgNi4 phase is present in the as-annealed alloy.The scanning electron microscope images illustrate that the grain of the alloy is significantly refined by melt spin ning tech no logy.The gaseous hydrogen storage kinetic and thermodynamic properties were measured by using a Sievert's apparatus at different temperatures.The maximum hydrogen storage capacity of the as-cast,as?spun and as-annealed La0.8Pr0.2MgNi3.6Co0.4 alloy is 1.699,1.637 and 1.535 wt.% at 373 K and 3 MPa,respectively.The annealed alloy has flatter and wider pressure plateaus compared with the as-cast and as-spun alloys,which correspond to the hydrogen absorption and desorption process of LaMgNi4 and corresponding hydride.Furthermore,the enthalpy and entropy changes of LaMgNi4 during hydrogenation at different temperatures were calculated using Van't Hoff methods.
基金the National Key R&D Program of China(No.2019YFA0405502)the Key Research Program of the Chinese Academy of Sciences under grant No.XDPB09-02+8 种基金the National Natural Science Foundation of China(Grant Nos.11973052,11833006,11473033 and 11603037)the International partnership program’s Key foreign cooperation project,Bureau of International Cooperation,Chinese Academy of Sciences(No.114A32KYSB20160049)supported by the Astronomical Big Data Joint Research Center,co-founded by the National Astronomical Observatories,Chinese Academy of Sciences and Alibaba Cloudpartially supported by the Open Project Program of the Key Laboratory of Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciencesthe financial support from China Scholarship Council(CSC,No.201604910642)for his study at New Mexico State University in the United States of Americathe supports from Youth Innovation Promotion Association,Chinese Academy of SciencesGuo Shou Jing Telescope(the Large Sky Area Multi-Object Fiber Spectroscopic Telescope LAMOST)is a National Major Scientific Project built by the Chinese Academy of Sciences.Funding for the project has been provided by the National Development and Reform Commissionthe NASA/IPAC Infrared Science Archive,which is funded by the National Aeronautics and Space Administrationthe Wide-field Infrared Survey Explorer,which is a joint project of the University of California,Los Angeles,and the Jet Propulsion Laboratory/California Institute of Technology,funded by the National Aeronautics and Space Administration。
文摘Two Li-rich candidates,TYC 1338-1410-1 and TYC 2825-596-1,were observed by the new high-resolution echelle spectrograph,LAMOST/HRS.Based on their high-resolution and high-signal-tonoise ratio(SNR)spectra,we derived stellar parameters and abundances of 14 important elements for the two candidates.The stellar parameters and lithium abundances indicate that they are Li-rich K-type giants,and having A(Li)NLTE and 2.91 dex,respectively.Our analysis suggests that TYC 1338-1410-1 is probably a red giant branch(RGB)star at the bump stage,while TYC 2825-596-1 is most likely to be a core helium-burning red clump(RC)star.The line profiles of both spectra indicate that the two Li-rich giants are slow rotators and do not show infrared(IR)excess.We conclude that engulfment is not the lithium enrichment mechanism for either star.The enriched lithium of TYC 1338-1410-1 could be created via the Cameron-Fowler mechanism,while the lithium excess in TYC 2825-596-1 could be associated with either non-canonical mixing processes or He-flash.