The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,a...The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,and there were few wells that met good quality source rocks,so it is difficult to evaluate the source rocks in the study area precisely by geochemical analysis only.Based on the Rock-Eval pyrolysis,total organic carbon(TOC)testing,the organic matter(OM)abundance of Paleogene source rocks in the southwestern Bozhong Sag were evaluated,including the lower of second member of Dongying Formation(E_(3)d2L),the third member of Dongying Formation(E_(3)d_(3)),the first and second members of Shahejie Formation(E_(2)s_(1+2)),the third member of Shahejie Formation(E_(2)s_(3)).The results indicate that the E_(2)s_(1+2)and E_(2)s_(3)have better hydrocarbon generative potentials with the highest OM abundance,the E_(3)d_(3)are of the second good quality,and the E_(3)d2L have poor to fair hydrocarbon generative potential.Furthermore,the well logs were applied to predict TOC and residual hydrocarbon generation potential(S_(2))based on the sedimentary facies classification,usingΔlogR,generalizedΔlogR,logging multiple linear regression and BP neural network methods.The various methods were compared,and the BP neural network method have relatively better prediction accuracy.Based on the pre-stack simultaneous inversion(P-wave impedance,P-wave velocity and density inversion results)and the post-stack seismic attributes,the three-dimensional(3D)seismic prediction of TOC and S_(2)was carried out.The results show that the seismic near well prediction results of TOC and S_(2)based on seismic multi-attributes analysis correspond well with the results of well logging methods,and the plane prediction results are identical with the sedimentary facies map in the study area.The TOC and S_(2)values of E_(2)s_(1+2)and E_(2)s_(3)are higher than those in E_(3)d_(3)and E_(3)d_(2)L,basically consistent with the geochemical analysis res展开更多
Halite and gypsum minerals in saline shale make the retention mechanism and chemical fractionation of residual oil unique. The Dongpu Depression in North China is a typically saline lacustrine basin with developing ha...Halite and gypsum minerals in saline shale make the retention mechanism and chemical fractionation of residual oil unique. The Dongpu Depression in North China is a typically saline lacustrine basin with developing halite and gypsum. The effect of gypsum minerals on residual oil content and chemical fractionation remains unclear. In this study, shale samples with different gypsum contents were used in organic geochemical experiments, showing that the high total organic matter (TOC) content and type II kerogen leads to a high residual oil content, as shown by high values of volatile hydrocarbon (S1) and extractable organic matter (EOM). XRD and FE-SEM result indicate that the existence of gypsum in saline shale contributes to an enhanced pore space and a higher residual oil content in comparison to non-gypsum shale. Additionally, the increase in the gypsum mineral content leads to an increase in the saturated hydrocarbon percentage and a decrease in polar components percentage (resins and asphaltene). Furthermore, thermal simulation experiments on low-mature saline shale show that the percentage of saturated hydrocarbons in the residual oil is high and remains stable and that the storage space is mainly mesoporous (> 20 nm) in the oil expulsion stage. However, the saturated hydrocarbons percentage decreases rapidly, and oil exists in mesopores (> 20 nm and < 5 nm) in the gas expulsion stage. In general, gypsum is conducive to the development of pore space, the adsorption of hydrocarbons and the occurrence of saturated hydrocarbon, leading to large quantities of residual oil. The data in this paper should prove to be reliable for shale oil exploration in saline lacustrine basins.展开更多
Scholars often see the gas adsorption technique as a straight-to-interpret technique and adopt the pore size distribution(PSD)given by the gas adsorption technique directly to interpret pore-structure-related issues.T...Scholars often see the gas adsorption technique as a straight-to-interpret technique and adopt the pore size distribution(PSD)given by the gas adsorption technique directly to interpret pore-structure-related issues.The oversimplification of interpreting shale PSD based on monogeometric thermodynamic models leads to apparent bias to the realistic pore network.This work aims at establishing a novel thermodynamic model for shale PSD interpretation.We simplified the pore space into two geometric types—cylinder-shaped and slit-shaped.Firstly,Low-temperature Nitrogen Adsorption data were analyzed utilizing two monogeometric models(cylindrical and slit)to generate PSD_(cyl).and PSD_(slit);Secondly,pore geometric segmentation was carried out using Watershed by flooding on typical SEM images to obtain the ratio of slit-shaped(∅_(s))and cylinder-shaped pores(∅_(c)).Combining the results of the two,we proposed a novel hybrid model.We performed pyrolysis,XRD,FE-SEM observation,quantitative comparison with the results obtained by the DFT model,and fractal analysis to discuss the validity of the obtained PSD_(Hybrid).The results showed that:the hybrid model proposed in this work could better reflect the real geometry of pore space and provide a more realistic PSD;compared with thermodynamic monogeometric models,PSD obtained from the hybrid model are closer to that from the DFT model,with an improvement in the deviation from the DFT model from 5.06%to 68.88%.The proposed hybrid model has essential application prospects for better interpretation of shale pore space.It is also worth noting that we suggest applying the proposed hybrid model for PSD analysis in the range of 5-100 nm.展开更多
The organic geochemistry and petrology of source rocks determine the hydrocarbon generation potential of the Banqiao Sag. In this study, organic geochemistry and petrology were used to determine the abundance of organ...The organic geochemistry and petrology of source rocks determine the hydrocarbon generation potential of the Banqiao Sag. In this study, organic geochemistry and petrology were used to determine the abundance of organic matter(OM), OM type, OM maturity, and sedimentary environments of the source rocks, collected from Cenozoic Shahejie Formation, Banqiao Sag, Bohai Bay Basin, China. Vitrinite and liptinite are the main maceral composition of the source rocks, and range from 18% to 81% and from 2% to82% on a mineral matter free(MMF) basis, respectively. The values of vitrinite reflectance(Ro)(0.36%-1.20%) and the Tmaxvalues(397-486.C) show that the thermal maturity range from low mature to peak-maturity. The abundance of OM varies between 0.22% and 4.37%, suggesting that the source rocks of the Shahejie(Es) Formation are mainly fair to good source rocks. The Rock-Eval pyrolysis results show that the source rocks have good petroleum generation potential. The amount of free hydrocarbons(S_1)and hydrocarbons generated from pyrolysis(S_(2)) range within 0.01-3.70 mg/g, and 0.04-29.17 mg/g. The hydrogen index(HI) varies between 18.18 and 741.13 mg HC/g TOC, with most of the samples appearing to be mainly Type II kerogen, and thereby exhibiting the ability to generate both oil and gas. The ratios of Pr/Ph, the cross plot of Pr/nC_(17)-Ph/nC_(18), the cross plot of C_(29)/C_(27)-Pr/Ph, and ternary of dibenzothiophene, dibenzofuran, and fluorene, indicate that the Shahejie Formation deposited in suboxic and weak reducing environments. The main biological source is from advanced plants. The maceral composition and rock pyrolysis data indicate the kerogen type is a humic type or mixed sapropelic-humic type. The source rocks of the Shahejie(Es) Formation occur in the oil window, and the abundant organic richness,humic kerogen demonstrate that these rocks are effective oil and gas source rocks. The mudstone rocks in the Shahejie Formation are the main source of oil and gas and represent the main exploration target for the Banq展开更多
文摘The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,and there were few wells that met good quality source rocks,so it is difficult to evaluate the source rocks in the study area precisely by geochemical analysis only.Based on the Rock-Eval pyrolysis,total organic carbon(TOC)testing,the organic matter(OM)abundance of Paleogene source rocks in the southwestern Bozhong Sag were evaluated,including the lower of second member of Dongying Formation(E_(3)d2L),the third member of Dongying Formation(E_(3)d_(3)),the first and second members of Shahejie Formation(E_(2)s_(1+2)),the third member of Shahejie Formation(E_(2)s_(3)).The results indicate that the E_(2)s_(1+2)and E_(2)s_(3)have better hydrocarbon generative potentials with the highest OM abundance,the E_(3)d_(3)are of the second good quality,and the E_(3)d2L have poor to fair hydrocarbon generative potential.Furthermore,the well logs were applied to predict TOC and residual hydrocarbon generation potential(S_(2))based on the sedimentary facies classification,usingΔlogR,generalizedΔlogR,logging multiple linear regression and BP neural network methods.The various methods were compared,and the BP neural network method have relatively better prediction accuracy.Based on the pre-stack simultaneous inversion(P-wave impedance,P-wave velocity and density inversion results)and the post-stack seismic attributes,the three-dimensional(3D)seismic prediction of TOC and S_(2)was carried out.The results show that the seismic near well prediction results of TOC and S_(2)based on seismic multi-attributes analysis correspond well with the results of well logging methods,and the plane prediction results are identical with the sedimentary facies map in the study area.The TOC and S_(2)values of E_(2)s_(1+2)and E_(2)s_(3)are higher than those in E_(3)d_(3)and E_(3)d_(2)L,basically consistent with the geochemical analysis res
基金funded by the National Natural Science Foundation of China (NSFC) (41872128)the Science Foundation of China University of Petroleum, Beijing (No. 2462020YXZZ021).
文摘Halite and gypsum minerals in saline shale make the retention mechanism and chemical fractionation of residual oil unique. The Dongpu Depression in North China is a typically saline lacustrine basin with developing halite and gypsum. The effect of gypsum minerals on residual oil content and chemical fractionation remains unclear. In this study, shale samples with different gypsum contents were used in organic geochemical experiments, showing that the high total organic matter (TOC) content and type II kerogen leads to a high residual oil content, as shown by high values of volatile hydrocarbon (S1) and extractable organic matter (EOM). XRD and FE-SEM result indicate that the existence of gypsum in saline shale contributes to an enhanced pore space and a higher residual oil content in comparison to non-gypsum shale. Additionally, the increase in the gypsum mineral content leads to an increase in the saturated hydrocarbon percentage and a decrease in polar components percentage (resins and asphaltene). Furthermore, thermal simulation experiments on low-mature saline shale show that the percentage of saturated hydrocarbons in the residual oil is high and remains stable and that the storage space is mainly mesoporous (> 20 nm) in the oil expulsion stage. However, the saturated hydrocarbons percentage decreases rapidly, and oil exists in mesopores (> 20 nm and < 5 nm) in the gas expulsion stage. In general, gypsum is conducive to the development of pore space, the adsorption of hydrocarbons and the occurrence of saturated hydrocarbon, leading to large quantities of residual oil. The data in this paper should prove to be reliable for shale oil exploration in saline lacustrine basins.
基金financially supported by the National Key R&D Program of China(Grant No.2017YFC0603106)the Youth Program of National Natural Science Foundation of China(Grant No.41802148)the State Key Laboratory of Petroleum Resources and Prospecting(Grant No.2462017YJRC025,Grant No.PRP/indep04-1611)
文摘Scholars often see the gas adsorption technique as a straight-to-interpret technique and adopt the pore size distribution(PSD)given by the gas adsorption technique directly to interpret pore-structure-related issues.The oversimplification of interpreting shale PSD based on monogeometric thermodynamic models leads to apparent bias to the realistic pore network.This work aims at establishing a novel thermodynamic model for shale PSD interpretation.We simplified the pore space into two geometric types—cylinder-shaped and slit-shaped.Firstly,Low-temperature Nitrogen Adsorption data were analyzed utilizing two monogeometric models(cylindrical and slit)to generate PSD_(cyl).and PSD_(slit);Secondly,pore geometric segmentation was carried out using Watershed by flooding on typical SEM images to obtain the ratio of slit-shaped(∅_(s))and cylinder-shaped pores(∅_(c)).Combining the results of the two,we proposed a novel hybrid model.We performed pyrolysis,XRD,FE-SEM observation,quantitative comparison with the results obtained by the DFT model,and fractal analysis to discuss the validity of the obtained PSD_(Hybrid).The results showed that:the hybrid model proposed in this work could better reflect the real geometry of pore space and provide a more realistic PSD;compared with thermodynamic monogeometric models,PSD obtained from the hybrid model are closer to that from the DFT model,with an improvement in the deviation from the DFT model from 5.06%to 68.88%.The proposed hybrid model has essential application prospects for better interpretation of shale pore space.It is also worth noting that we suggest applying the proposed hybrid model for PSD analysis in the range of 5-100 nm.
基金financially supported by the National Key Research and Development Program of China (Grant No. 2017YFC0603106)。
文摘The organic geochemistry and petrology of source rocks determine the hydrocarbon generation potential of the Banqiao Sag. In this study, organic geochemistry and petrology were used to determine the abundance of organic matter(OM), OM type, OM maturity, and sedimentary environments of the source rocks, collected from Cenozoic Shahejie Formation, Banqiao Sag, Bohai Bay Basin, China. Vitrinite and liptinite are the main maceral composition of the source rocks, and range from 18% to 81% and from 2% to82% on a mineral matter free(MMF) basis, respectively. The values of vitrinite reflectance(Ro)(0.36%-1.20%) and the Tmaxvalues(397-486.C) show that the thermal maturity range from low mature to peak-maturity. The abundance of OM varies between 0.22% and 4.37%, suggesting that the source rocks of the Shahejie(Es) Formation are mainly fair to good source rocks. The Rock-Eval pyrolysis results show that the source rocks have good petroleum generation potential. The amount of free hydrocarbons(S_1)and hydrocarbons generated from pyrolysis(S_(2)) range within 0.01-3.70 mg/g, and 0.04-29.17 mg/g. The hydrogen index(HI) varies between 18.18 and 741.13 mg HC/g TOC, with most of the samples appearing to be mainly Type II kerogen, and thereby exhibiting the ability to generate both oil and gas. The ratios of Pr/Ph, the cross plot of Pr/nC_(17)-Ph/nC_(18), the cross plot of C_(29)/C_(27)-Pr/Ph, and ternary of dibenzothiophene, dibenzofuran, and fluorene, indicate that the Shahejie Formation deposited in suboxic and weak reducing environments. The main biological source is from advanced plants. The maceral composition and rock pyrolysis data indicate the kerogen type is a humic type or mixed sapropelic-humic type. The source rocks of the Shahejie(Es) Formation occur in the oil window, and the abundant organic richness,humic kerogen demonstrate that these rocks are effective oil and gas source rocks. The mudstone rocks in the Shahejie Formation are the main source of oil and gas and represent the main exploration target for the Banq