Ammonia (NH3) volatilization, denitrification loss, and nitrous oxide (N2O) emission were investigated from an irrigated wheat-maize rotation field on the North China Plain, and the magnitude of gaseous N loss from de...Ammonia (NH3) volatilization, denitrification loss, and nitrous oxide (N2O) emission were investigated from an irrigated wheat-maize rotation field on the North China Plain, and the magnitude of gaseous N loss from denitrification and NH3 volatilization was assessed. The micrometeorological gradient diffusion method in conjunction with a Bowen Ratio system was utilized to measure actual NH3 fluxes over a large area, while the acetylene inhibition technique (intact soil cores) was employed for measurement of denitrification losses and N2O emissions. Ammonia volatilization loss was 26.62% of the applied fertilizer nitrogen (N) under maize, while 0.90% and 15.55% were lost from the wheat field at sowing and topdressing, respectively. The differences in NH3 volatilization between different measurement events may be due to differences between the fertilization methods, and to differences in climatic conditions such as soil temperature.Denitrification losses in the fertilized plots were 0.67%-2.87% and 0.31%-0.49% of the applied fertilizer N under maize and wheat after subtracting those of the controls, respectively. Nitrous oxide emissions in the fertilized plots were approximately 0.08%-0.41% and 0.26%-0.34% of the applied fertilizer N over the maize and wheat seasons after subtracting those of the controls, correspondingly. The fertilizer N losses due to NH3 volatilization were markedly higher than those through denitrification and nitrous oxide emissions. These results indicated that NH3 volatilization was an important N transformation in the crop-soil system and was likely to be the major cause of low efficiencies with N fertilizer in the study area. Denitrification was not a very important pathway of N fertilizer loss, but did result in important evolution of the greenhouse gas N2O and the effect of N2O emitted from agricultural fields on environment should not be overlooked.展开更多
Undisturbed soil core with many macropores and disturbed soil core with onlyone macropore (diameter is 10 mm) were probed by X-ray computed tomography (CT). The size, number,shape and continuity of macropores in the t...Undisturbed soil core with many macropores and disturbed soil core with onlyone macropore (diameter is 10 mm) were probed by X-ray computed tomography (CT). The size, number,shape and continuity of macropores in the transverse and vertical sectionsof soil were characterizedusing CT scanning images. The probability densities of macropores in the transverse section of soilcore exhibited a logarithmic P distribution. Results indicated that CT scanning was a promisingnondestructive method for characterizing macropores in soils.展开更多
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-413-3)the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011803) the Australian Centre for
文摘Ammonia (NH3) volatilization, denitrification loss, and nitrous oxide (N2O) emission were investigated from an irrigated wheat-maize rotation field on the North China Plain, and the magnitude of gaseous N loss from denitrification and NH3 volatilization was assessed. The micrometeorological gradient diffusion method in conjunction with a Bowen Ratio system was utilized to measure actual NH3 fluxes over a large area, while the acetylene inhibition technique (intact soil cores) was employed for measurement of denitrification losses and N2O emissions. Ammonia volatilization loss was 26.62% of the applied fertilizer nitrogen (N) under maize, while 0.90% and 15.55% were lost from the wheat field at sowing and topdressing, respectively. The differences in NH3 volatilization between different measurement events may be due to differences between the fertilization methods, and to differences in climatic conditions such as soil temperature.Denitrification losses in the fertilized plots were 0.67%-2.87% and 0.31%-0.49% of the applied fertilizer N under maize and wheat after subtracting those of the controls, respectively. Nitrous oxide emissions in the fertilized plots were approximately 0.08%-0.41% and 0.26%-0.34% of the applied fertilizer N over the maize and wheat seasons after subtracting those of the controls, correspondingly. The fertilizer N losses due to NH3 volatilization were markedly higher than those through denitrification and nitrous oxide emissions. These results indicated that NH3 volatilization was an important N transformation in the crop-soil system and was likely to be the major cause of low efficiencies with N fertilizer in the study area. Denitrification was not a very important pathway of N fertilizer loss, but did result in important evolution of the greenhouse gas N2O and the effect of N2O emitted from agricultural fields on environment should not be overlooked.
基金Project supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011803) the Knowledge Innovation Program of the Chinese Academy of Sciences (No. K2CX2-404)the Science and Technology Innovation Program of Hohai
文摘Undisturbed soil core with many macropores and disturbed soil core with onlyone macropore (diameter is 10 mm) were probed by X-ray computed tomography (CT). The size, number,shape and continuity of macropores in the transverse and vertical sectionsof soil were characterizedusing CT scanning images. The probability densities of macropores in the transverse section of soilcore exhibited a logarithmic P distribution. Results indicated that CT scanning was a promisingnondestructive method for characterizing macropores in soils.