A novel process, microwave assisted catalytic wet air oxidation(MW-CWO), was applied for the degradation of H-acid(1-amino-8-naphthol-3, 6-disulfonic acid) in aqueous solution. Ni-loaded granular activated carbon(GAC)...A novel process, microwave assisted catalytic wet air oxidation(MW-CWO), was applied for the degradation of H-acid(1-amino-8-naphthol-3, 6-disulfonic acid) in aqueous solution. Ni-loaded granular activated carbon(GAC), prepared by immersion-calcination method, was used as catalyst. The results showed that the MW-CWO process was very effective for the degradation of H-acid in aqueous solution under atmospheric pressure with 87.4% TOC (total organic carbon) reduction in 20 min. Ni on GAC existed in the form of NiO as specified by XRD. Loss of Ni was significant in the initial stage, and then remained almost constant after 20 min reaction. BET surface area results showed that the surface property of GAC after MW-CWO process was superior to that of blank GAC.展开更多
The present work extended the knowledge on the binding and complexation of humic substances(humic acid or fulvic acid) and hematite by Fourier transform infrared spectroscopy(FTIR). The FTIR data gained gave the consi...The present work extended the knowledge on the binding and complexation of humic substances(humic acid or fulvic acid) and hematite by Fourier transform infrared spectroscopy(FTIR). The FTIR data gained gave the consist evidences by two different sampling preparation methods that the interaction mechanism between humic substances and hematite was mainly conform to the ligand exchange involving carboxylic functional groups of humic substances and the surfaces sites of hematite. The present method, although associated with some uncertainties, provided an opportunity to increase the knowledge in this field.展开更多
Heterogeneous photocatalytic degradation of γ-HCH on soil surfaces was carried out to evaluate the photocatalytic effectiveness of α-Fe 2O 3 and TiO 2 toward degrading γ-HCH on soil surfaces. After being spiked ...Heterogeneous photocatalytic degradation of γ-HCH on soil surfaces was carried out to evaluate the photocatalytic effectiveness of α-Fe 2O 3 and TiO 2 toward degrading γ-HCH on soil surfaces. After being spiked with γ-HCH, soil samples were loaded with α-Fe 2O 3 or TiO 2 and exposed to UV-light irradiation. Different catalyst loads, 0%, 2%, 5%, 7%, and 10% (wt.)α-Fe 2O 3; 0%, 0.5%, 1%, 2:(wt.)TiO 2, were tested for up to 7 d irradiation. The effects of soil thickness, acidity, and humic substances were also investigated. The obtained results indicated that the γ-HCH photodegradation follows the pseudo-first-order kinetics. The addition of α-Fe 2O 3 or TiO 2 accelerates the photodegradation of γ-HCH, while the photodegradation rate decreases when the content of α-Fe 2O 3 exceeds 7%(wt.). The degradation rate increases with the soil pH value. Humic substances inhibit the photocatalytic degradation of γ-HCH. Pentachlorocyclohexene, tetrachlorocyclohexene, and trichlorobenzene are detected as photodegradation intermediates, which are gradually degraded with the photodegradation evolution.展开更多
The TiO 2 nanotube sample was prepared via a NaOH solution in a Teflon vessel at 150℃. The as-prepared nanotubes were then treated with H 2SO 4 solutions. The TiO 2 nanotube has a crystalline structure with open-...The TiO 2 nanotube sample was prepared via a NaOH solution in a Teflon vessel at 150℃. The as-prepared nanotubes were then treated with H 2SO 4 solutions. The TiO 2 nanotube has a crystalline structure with open-ended and multiwall morphologies. The TiO 2 nanotubes before and after surface acid treatment were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and UV-VIS dispersive energy spectrophotometry(DRS). The photocatalytic activity of the samples was evaluated by photocatalytic degradation of acid orange II in aqueous solutions. It was found that the order of photocatalytic activity was as follows: TiO 2 nanotubes treated with 1.0 mol/L H 2SO 4 solution (TiO 2(1.0M H 2SO 4) nanotubes)>TiO 2 nanotubes treated with 0.2 mol/L H 2SO 4 solution (TiO 2(0.2M H 2SO 4) nanotubes)>TiO 2 nanotubes >TiO 2 powder. This was attributed to the fact that TiO 2 nanotubes treated with H 2SO 4 was composed of smaller particles and had higher specific surface areas. Furthermore, the smaller TiO 2 particles were beneficial to the transfer and separation of photo-generated electrons and holes in the inner of and on the surface of TiO 2 particles and reduced the recombination of photo-generated electrons and holes. Acid treatment was particularly effective for TiO 2 nanotubes, this increase in activity was correlated with the concentration of H 2SO 4 solution.展开更多
基金The Hi Tech Research and Development Program(863) of China(No. 2002AA649090) and the National Basic Research Program(973) of China(No.2003CB415006)
文摘A novel process, microwave assisted catalytic wet air oxidation(MW-CWO), was applied for the degradation of H-acid(1-amino-8-naphthol-3, 6-disulfonic acid) in aqueous solution. Ni-loaded granular activated carbon(GAC), prepared by immersion-calcination method, was used as catalyst. The results showed that the MW-CWO process was very effective for the degradation of H-acid in aqueous solution under atmospheric pressure with 87.4% TOC (total organic carbon) reduction in 20 min. Ni on GAC existed in the form of NiO as specified by XRD. Loss of Ni was significant in the initial stage, and then remained almost constant after 20 min reaction. BET surface area results showed that the surface property of GAC after MW-CWO process was superior to that of blank GAC.
文摘The present work extended the knowledge on the binding and complexation of humic substances(humic acid or fulvic acid) and hematite by Fourier transform infrared spectroscopy(FTIR). The FTIR data gained gave the consist evidences by two different sampling preparation methods that the interaction mechanism between humic substances and hematite was mainly conform to the ligand exchange involving carboxylic functional groups of humic substances and the surfaces sites of hematite. The present method, although associated with some uncertainties, provided an opportunity to increase the knowledge in this field.
文摘Heterogeneous photocatalytic degradation of γ-HCH on soil surfaces was carried out to evaluate the photocatalytic effectiveness of α-Fe 2O 3 and TiO 2 toward degrading γ-HCH on soil surfaces. After being spiked with γ-HCH, soil samples were loaded with α-Fe 2O 3 or TiO 2 and exposed to UV-light irradiation. Different catalyst loads, 0%, 2%, 5%, 7%, and 10% (wt.)α-Fe 2O 3; 0%, 0.5%, 1%, 2:(wt.)TiO 2, were tested for up to 7 d irradiation. The effects of soil thickness, acidity, and humic substances were also investigated. The obtained results indicated that the γ-HCH photodegradation follows the pseudo-first-order kinetics. The addition of α-Fe 2O 3 or TiO 2 accelerates the photodegradation of γ-HCH, while the photodegradation rate decreases when the content of α-Fe 2O 3 exceeds 7%(wt.). The degradation rate increases with the soil pH value. Humic substances inhibit the photocatalytic degradation of γ-HCH. Pentachlorocyclohexene, tetrachlorocyclohexene, and trichlorobenzene are detected as photodegradation intermediates, which are gradually degraded with the photodegradation evolution.
文摘The TiO 2 nanotube sample was prepared via a NaOH solution in a Teflon vessel at 150℃. The as-prepared nanotubes were then treated with H 2SO 4 solutions. The TiO 2 nanotube has a crystalline structure with open-ended and multiwall morphologies. The TiO 2 nanotubes before and after surface acid treatment were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and UV-VIS dispersive energy spectrophotometry(DRS). The photocatalytic activity of the samples was evaluated by photocatalytic degradation of acid orange II in aqueous solutions. It was found that the order of photocatalytic activity was as follows: TiO 2 nanotubes treated with 1.0 mol/L H 2SO 4 solution (TiO 2(1.0M H 2SO 4) nanotubes)>TiO 2 nanotubes treated with 0.2 mol/L H 2SO 4 solution (TiO 2(0.2M H 2SO 4) nanotubes)>TiO 2 nanotubes >TiO 2 powder. This was attributed to the fact that TiO 2 nanotubes treated with H 2SO 4 was composed of smaller particles and had higher specific surface areas. Furthermore, the smaller TiO 2 particles were beneficial to the transfer and separation of photo-generated electrons and holes in the inner of and on the surface of TiO 2 particles and reduced the recombination of photo-generated electrons and holes. Acid treatment was particularly effective for TiO 2 nanotubes, this increase in activity was correlated with the concentration of H 2SO 4 solution.