Water channel proteins facilitate water flux across cell membranes and play important roles in plant growth and development. By GUS histochemical assay in RWC3 promoter-GUS transgenic rice (Oryza sativa L. cv. Shenxia...Water channel proteins facilitate water flux across cell membranes and play important roles in plant growth and development. By GUS histochemical assay in RWC3 promoter-GUS transgenic rice (Oryza sativa L. cv. Shenxiangjin 4), one of the members of water channel proteins in rice, RWC3, was found to distribute widely in variety of organs, from vegetative and reproductive organs. Further studies showed that gibberellin (GA) enhanced the GUS activity in the transgenic calli, suspension cells and leaves, whereas ancymidol (anc), an inhibitor of GA synthesis, reduced the GUS activity. Sucrose was found to inhibit the effects induced by addition of GA, suggesting a possible cross-talk between GA and sucrose signaling on regulation of the RWC3 gene expression.展开更多
文摘Water channel proteins facilitate water flux across cell membranes and play important roles in plant growth and development. By GUS histochemical assay in RWC3 promoter-GUS transgenic rice (Oryza sativa L. cv. Shenxiangjin 4), one of the members of water channel proteins in rice, RWC3, was found to distribute widely in variety of organs, from vegetative and reproductive organs. Further studies showed that gibberellin (GA) enhanced the GUS activity in the transgenic calli, suspension cells and leaves, whereas ancymidol (anc), an inhibitor of GA synthesis, reduced the GUS activity. Sucrose was found to inhibit the effects induced by addition of GA, suggesting a possible cross-talk between GA and sucrose signaling on regulation of the RWC3 gene expression.