Proteolysis is one of the most important biochemical reactions during cheese ripening.Studies on the secondary structure of proteins during ripening would be helpful for characterizing protein changes for assessing ch...Proteolysis is one of the most important biochemical reactions during cheese ripening.Studies on the secondary structure of proteins during ripening would be helpful for characterizing protein changes for assessing cheese quality.Fourier transform infrared spectroscopy(FTIR),with self-deconvolution,second derivative analysis and band curve-fitting,was used to characterize the secondary structure of proteins in Cheddar cheese during ripening.The spectra of the amide I region showed great similarity,while the relative contents of the secondary structures underwent a series of changes.As ripening progressed,the α-helix content decreased and the β-sheet content increased.This structural shift was attributed to the strengthening of hydrogen bonds that resulted from hydrolysis of caseins.In summary,FTIR could provide the basis for rapid characterization of cheese that is undergoing ripening.展开更多
The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation(drip irrigation,sprinkler irrigation,flood irrigation).It is the first time tha...The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation(drip irrigation,sprinkler irrigation,flood irrigation).It is the first time that thermal infrared image is used for predicting the winter wheat yield and biomass.The temperature of crop and background was measured by thermal infrared image.It is necessary to get the crop background separation index(CBSIL,CBSIH),which can be used for distinguishing the crop value from the image.CBSIL and CBSIH(the temperature when the leaves are wet adequately;the temperature when the stomata of leaf is closed completely) are the threshold values.The temperature of crop ranged from CBSIL to CBSIH.Then the ICWSI was calculated based on relevant theoretical method.The value of stomata leaf has strong negative correlation with ICWSI proving the reliable value of ICWSI.In order to construct the high accuracy simulation model,the samples were divided into two parts.One was used for constructing the simulation model,the other for checking the accuracy of the model.Such result of the model was concluded as:(1) As for the simulation model of soil moisture,the correlation coefficient(R2) is larger than 0.887 6,the average of relative error(Er) ranges from 13.33% to 16.88%;(2) As for the simulation model of winter wheat yield,drip irrigation(0.887 6,16.89%,-0.12),sprinkler irrigation(0.970 0,14.85%,-0.12),flood irrigation(0.969 0,18.87%,0.18),with the values of R2,Er and CRM listed in the parentheses followed by the individual term.(3) As for winter wheat biomass,drip irrigation(0.980 0,13.70%,0.13),sprinkler irrigation(0.95,13.15%,-0.14),flood irrigation(0.970 0,14.48%,-0.13),and the values in the parentheses are demonstrated the same as above.Both the CRM and Er are shown to be very low values,which points to the accuracy and reliability of the model investigated.The accuracy of model is high and reliable.The results indicated that thermal infrared image can be used potentially for inversion of winter w展开更多
Target detection is one of the key technology of precision chemical application.Previously the digital coding modulation technique was commonly used to emit and receive the optical signal in the target detection syste...Target detection is one of the key technology of precision chemical application.Previously the digital coding modulation technique was commonly used to emit and receive the optical signal in the target detection systems previously in China.It was difficult to adjust the output power,and the anti-interference ability was weak in these systems.In order to resolve these problems,the target detection method based on analog sine-wave modulation was studied.The spectral detecting system was set up in the aspects of working principle,electric circuit,and optical path.Lab testing was performed.The results showed that the reflected signal from the target varied inversely with detection distances.It indicated that it was feasible to establish the target detection system using analog sine-wave modulation technology.Furthermore,quantitative measurement of the reflected optical signal for near-infrared and visible light could be achieved by using this system.The research laid the foundation for the future development of the corresponding instrument.展开更多
The effects of heat treatment(heating temperature and pH) on the structures and emulsifying properties of caseins were systematically studied by spectroscopy.Heat treatment from 60to 100℃resulted in an increase in th...The effects of heat treatment(heating temperature and pH) on the structures and emulsifying properties of caseins were systematically studied by spectroscopy.Heat treatment from 60to 100℃resulted in an increase in their fluorescence intensity,hydrodynamic diameter,turbidity and emulsifying activity index,but decreased the size polydispersity of caseins.In the pH range of 5.5to 7.0,the fluorescence intensity,hydrodynamic diameter,turbidity and emulsifying properties decreased with increased heating pH,but the size polydispersity of caseins increased with increased pH.The relationship between the surface fluorescence intensity and emulsifying activity was also investigated,revealing a correlation coefficient of 0.90.These results suggested that heat treatment could be used to modify the structures and emulsifying properties of caseins by appropriately selecting heating conditions.展开更多
Fourier transform infrared spectroscopy(FTIR) and circular dichroism(CD) were used to investigate the conformational changes of heated whey protein(WP) and the corresponding changes in the hydrolysates immunoreactivit...Fourier transform infrared spectroscopy(FTIR) and circular dichroism(CD) were used to investigate the conformational changes of heated whey protein(WP) and the corresponding changes in the hydrolysates immunoreactivity were determined by competitive enzyme-linked immunosorbent assay(ELISA).Results showed that the contents of α-helix and β-sheet of WP did not decrease much under mild heating conditions and the antigenicity was relatively high;when the heating intensity increased(70 ℃ for 25 min or 75 ℃ for 20 min),the content of α-helix and β-sheet decreased to the minimum,so was the antigenicity;However,when the WP was heated at even higher temperature and for a longer time,the β-sheet associated with protein aggregation begun to increase and the antigenicity increased correspondingly.It was concluded that the conformations of heated WP and the antigenicity of its hydrolysates are related and the optimum structure for decreasing the hydrolysates antigeniity is the least content of α-helix and β-sheet.Establishing the relationship between the WP secondary structure and WP hydrolysates antigenicity is significant to supply the reference for antigenicity reduction by enzymolysis.展开更多
基金financially supported by Beijing Municipal Commission of Education Co-Constructed Programand Chinese Universities Scientific Fund(2009-4-25)
文摘Proteolysis is one of the most important biochemical reactions during cheese ripening.Studies on the secondary structure of proteins during ripening would be helpful for characterizing protein changes for assessing cheese quality.Fourier transform infrared spectroscopy(FTIR),with self-deconvolution,second derivative analysis and band curve-fitting,was used to characterize the secondary structure of proteins in Cheddar cheese during ripening.The spectra of the amide I region showed great similarity,while the relative contents of the secondary structures underwent a series of changes.As ripening progressed,the α-helix content decreased and the β-sheet content increased.This structural shift was attributed to the strengthening of hydrogen bonds that resulted from hydrolysis of caseins.In summary,FTIR could provide the basis for rapid characterization of cheese that is undergoing ripening.
基金China-Germany international cooperation project(IRTG1070)National Natural Science Foundation of China(Item number:0971940)
文摘The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation(drip irrigation,sprinkler irrigation,flood irrigation).It is the first time that thermal infrared image is used for predicting the winter wheat yield and biomass.The temperature of crop and background was measured by thermal infrared image.It is necessary to get the crop background separation index(CBSIL,CBSIH),which can be used for distinguishing the crop value from the image.CBSIL and CBSIH(the temperature when the leaves are wet adequately;the temperature when the stomata of leaf is closed completely) are the threshold values.The temperature of crop ranged from CBSIL to CBSIH.Then the ICWSI was calculated based on relevant theoretical method.The value of stomata leaf has strong negative correlation with ICWSI proving the reliable value of ICWSI.In order to construct the high accuracy simulation model,the samples were divided into two parts.One was used for constructing the simulation model,the other for checking the accuracy of the model.Such result of the model was concluded as:(1) As for the simulation model of soil moisture,the correlation coefficient(R2) is larger than 0.887 6,the average of relative error(Er) ranges from 13.33% to 16.88%;(2) As for the simulation model of winter wheat yield,drip irrigation(0.887 6,16.89%,-0.12),sprinkler irrigation(0.970 0,14.85%,-0.12),flood irrigation(0.969 0,18.87%,0.18),with the values of R2,Er and CRM listed in the parentheses followed by the individual term.(3) As for winter wheat biomass,drip irrigation(0.980 0,13.70%,0.13),sprinkler irrigation(0.95,13.15%,-0.14),flood irrigation(0.970 0,14.48%,-0.13),and the values in the parentheses are demonstrated the same as above.Both the CRM and Er are shown to be very low values,which points to the accuracy and reliability of the model investigated.The accuracy of model is high and reliable.The results indicated that thermal infrared image can be used potentially for inversion of winter w
基金Supported by the National“863”Project of China(2010AA10A301)National Technology Support Project for the 12th Five-year Plan(2011BAD20B07)
文摘Target detection is one of the key technology of precision chemical application.Previously the digital coding modulation technique was commonly used to emit and receive the optical signal in the target detection systems previously in China.It was difficult to adjust the output power,and the anti-interference ability was weak in these systems.In order to resolve these problems,the target detection method based on analog sine-wave modulation was studied.The spectral detecting system was set up in the aspects of working principle,electric circuit,and optical path.Lab testing was performed.The results showed that the reflected signal from the target varied inversely with detection distances.It indicated that it was feasible to establish the target detection system using analog sine-wave modulation technology.Furthermore,quantitative measurement of the reflected optical signal for near-infrared and visible light could be achieved by using this system.The research laid the foundation for the future development of the corresponding instrument.
基金International Science&Technology Cooperation Program of China(2011DFA32550)Ministry of Science and Technology of China(2012BAD12B08)
文摘The effects of heat treatment(heating temperature and pH) on the structures and emulsifying properties of caseins were systematically studied by spectroscopy.Heat treatment from 60to 100℃resulted in an increase in their fluorescence intensity,hydrodynamic diameter,turbidity and emulsifying activity index,but decreased the size polydispersity of caseins.In the pH range of 5.5to 7.0,the fluorescence intensity,hydrodynamic diameter,turbidity and emulsifying properties decreased with increased heating pH,but the size polydispersity of caseins increased with increased pH.The relationship between the surface fluorescence intensity and emulsifying activity was also investigated,revealing a correlation coefficient of 0.90.These results suggested that heat treatment could be used to modify the structures and emulsifying properties of caseins by appropriately selecting heating conditions.
基金National Science and Technology Support Program(2009BADB9B06)Beijing Science and Technology Program(D10110504601002)
文摘Fourier transform infrared spectroscopy(FTIR) and circular dichroism(CD) were used to investigate the conformational changes of heated whey protein(WP) and the corresponding changes in the hydrolysates immunoreactivity were determined by competitive enzyme-linked immunosorbent assay(ELISA).Results showed that the contents of α-helix and β-sheet of WP did not decrease much under mild heating conditions and the antigenicity was relatively high;when the heating intensity increased(70 ℃ for 25 min or 75 ℃ for 20 min),the content of α-helix and β-sheet decreased to the minimum,so was the antigenicity;However,when the WP was heated at even higher temperature and for a longer time,the β-sheet associated with protein aggregation begun to increase and the antigenicity increased correspondingly.It was concluded that the conformations of heated WP and the antigenicity of its hydrolysates are related and the optimum structure for decreasing the hydrolysates antigeniity is the least content of α-helix and β-sheet.Establishing the relationship between the WP secondary structure and WP hydrolysates antigenicity is significant to supply the reference for antigenicity reduction by enzymolysis.