The changes of the microstructure and the mechanical properties of FeCrMoCBY amorphous coatings prepared by plasma spraying after heat treatment were investigated.300,400,500 and 600℃were selected as the heat treatme...The changes of the microstructure and the mechanical properties of FeCrMoCBY amorphous coatings prepared by plasma spraying after heat treatment were investigated.300,400,500 and 600℃were selected as the heat treatment temperature,and the crystallization phenomenon occurred after the heat treatment at 600℃.The crystallization products of the coating heat-treated at 600℃were a-Fe and Fe23(C,B)6.Heat treatment was beneficial to the microhardness and the bonding strength of the coatings.The microhardness of the coating heat-treated at 600℃increased obviously,and the strongest bonding strength occurred in the coating heat-treated at 500℃.The improvement of the wear resistance of the coatings could attribute to heat treatment as well,and the wear resistance of the coating heat-treated at 600℃was the optimum,compared with the coating heat-treated at 500℃.展开更多
基金Funded by National Natural Science Foundation of China(No.51379070)。
文摘The changes of the microstructure and the mechanical properties of FeCrMoCBY amorphous coatings prepared by plasma spraying after heat treatment were investigated.300,400,500 and 600℃were selected as the heat treatment temperature,and the crystallization phenomenon occurred after the heat treatment at 600℃.The crystallization products of the coating heat-treated at 600℃were a-Fe and Fe23(C,B)6.Heat treatment was beneficial to the microhardness and the bonding strength of the coatings.The microhardness of the coating heat-treated at 600℃increased obviously,and the strongest bonding strength occurred in the coating heat-treated at 500℃.The improvement of the wear resistance of the coatings could attribute to heat treatment as well,and the wear resistance of the coating heat-treated at 600℃was the optimum,compared with the coating heat-treated at 500℃.