Gold nanomaterials exhibit unique advantages in tumor radiotherapy sensitization due to their enhanced X-ray deposition capability, excellent biocompatibility, and superior chemical, electronic, and optical properties...Gold nanomaterials exhibit unique advantages in tumor radiotherapy sensitization due to their enhanced X-ray deposition capability, excellent biocompatibility, and superior chemical, electronic, and optical properties. To date, studies on gold nanomaterial-mediated radiosensitization have been reported, with related mechanisms including catalyzing reactive oxygen species (ROS) production, depleting intracellular glutathione (GSH), overcoming tumor hypoxia, and regulating cell cycles. This article will elaborate on the research progress of gold nanomaterial-mediated tumor radiotherapy sensitization and discuss its mechanisms and future research directions. In addition, the limitations of gold nanomaterials in clinical applications will be further discussed.展开更多
文摘Gold nanomaterials exhibit unique advantages in tumor radiotherapy sensitization due to their enhanced X-ray deposition capability, excellent biocompatibility, and superior chemical, electronic, and optical properties. To date, studies on gold nanomaterial-mediated radiosensitization have been reported, with related mechanisms including catalyzing reactive oxygen species (ROS) production, depleting intracellular glutathione (GSH), overcoming tumor hypoxia, and regulating cell cycles. This article will elaborate on the research progress of gold nanomaterial-mediated tumor radiotherapy sensitization and discuss its mechanisms and future research directions. In addition, the limitations of gold nanomaterials in clinical applications will be further discussed.