Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to m...Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to modulate the optical properties of fluorescent molecules,which is less reported.In this paper,based on the fluorescence enhancement effect of AuNPs on 2-(2-hydroxyphenyl)-1H-benzimidazole(HPBI)molecules,zeolitic imidazolate framework-8(ZIF-8)crystals with structural stability were introduced.AuNPs@ZIF-8 exhibited a significantly pronounced fluorescence enhancement of the HPBI molecules.In addition,by comparing the fluorescence characteristics of the HPBI molecules adsorbed on AuNPs@ZIF-8 and those captured in AuNPs@ZIF-8,we found that the ZIF-8 can act as a spacer layer with highly effective near-field enhancement.All our preliminary results shed light on future research on the composite structures of noble metal particles and MOFs for fluorescent probes and sensing applications.展开更多
文摘Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to modulate the optical properties of fluorescent molecules,which is less reported.In this paper,based on the fluorescence enhancement effect of AuNPs on 2-(2-hydroxyphenyl)-1H-benzimidazole(HPBI)molecules,zeolitic imidazolate framework-8(ZIF-8)crystals with structural stability were introduced.AuNPs@ZIF-8 exhibited a significantly pronounced fluorescence enhancement of the HPBI molecules.In addition,by comparing the fluorescence characteristics of the HPBI molecules adsorbed on AuNPs@ZIF-8 and those captured in AuNPs@ZIF-8,we found that the ZIF-8 can act as a spacer layer with highly effective near-field enhancement.All our preliminary results shed light on future research on the composite structures of noble metal particles and MOFs for fluorescent probes and sensing applications.