The plasma mirror system was installed on the 1 PW laser beamline of Shanghai Superintense Ultrafast Laser Facility[SULF]for enhancing the temporal contrast of the laser pulse.About 2 orders of magnitude improvement o...The plasma mirror system was installed on the 1 PW laser beamline of Shanghai Superintense Ultrafast Laser Facility[SULF]for enhancing the temporal contrast of the laser pulse.About 2 orders of magnitude improvement on pulse contrast was measured on picosecond and nanosecond time scales.The experiments show that high-contrast laser pulses can significantly improve the cutoff energy and quantity of proton beams.Then different target distributions are assumed in particles in cell simulations,which can qualitatively assume the expansion of nanometer-scale foil.The high-contrast laser enables the SULF-1PW beamline to generally be of benefit for many potential applications.展开更多
In this research,we report the latest progress in the suppression of nanosecond prepulses from regenerative amplifier and multipass amplifiers in the SULF-1PW laser.The prepulse generated from the Pockels cell(PC)in a...In this research,we report the latest progress in the suppression of nanosecond prepulses from regenerative amplifier and multipass amplifiers in the SULF-1PW laser.The prepulse generated from the Pockels cell(PC)in a regenerative amplifier is delay-shifted by enlarging the distance between the PC and the nearby cavity mirror,and then removed by the extra pulse pickers outside the regenerative amplifier.The prepulses arising from multipass amplifiers are also further suppressed by adopting a novel amplifier configuration and properly rotating the Ti:sapphire crystals.After the optimizations,the temporal contrast on a nanosecond time scale is promoted to be better than a contrast level of 10^(-9).This research can provide beneficial guidance for the suppression of nanosecond prepulses in the high-peak-power femtosecond laser systems.展开更多
Overlay(OVL)for patterns placed at two different layers during microchip production is a key parameter that controls the manufacturing process.The tolerance of OVL metrology for the latest microchip needs to be at nan...Overlay(OVL)for patterns placed at two different layers during microchip production is a key parameter that controls the manufacturing process.The tolerance of OVL metrology for the latest microchip needs to be at nanometer scale.This paper discusses the influence on the accuracy and sensitivity of diffraction-based overlay(DBO)after developing inspection and after etching inspection by the asymmetrical deformation of the OVL mark induced by chemical mechanical polishing or etching.We show that the accuracy and sensitivity of DBO metrology can be significantly improved by matching the measuring light wavelength to the thickness between layers and by collecting high-order diffraction signals,promising a solution for future OVL metrology equipment.展开更多
This study entailed the development of a high-gradient modulation of microbunching for traditional radiation frequency accelerators using a minimized system driven by a relativistic Laguerre–Gaussian(LG)laser in thre...This study entailed the development of a high-gradient modulation of microbunching for traditional radiation frequency accelerators using a minimized system driven by a relativistic Laguerre–Gaussian(LG)laser in three-dimensional particlein-cell(PIC)simulations.It was observed that the LG laser could compress the transverse dimension of the beam to within a 0.7μm radius(divergence≈4.3 mrad),which is considerably lower than the case tuned by a Gaussian laser.In addition,the electron beam could be efficiently modulated to a high degree of bunching effect(>0.5)within~21 fs(~7μm)in the longitudinal direction.Such a high-gradient density modulation driven by an LG laser for pre-bunched,low-divergence,and stable electron beams provides a potential technology for the system minimization of X-ray free-electron lasers(XFELs)and ultrashort-scale(attosecond)electron diffraction research.展开更多
The characteristics of plasmas play an important role in femtosecond laser filament-based applications.Spectroscopic analysis is used to experimentally investigate the plasma density and its temperature of the air fil...The characteristics of plasmas play an important role in femtosecond laser filament-based applications.Spectroscopic analysis is used to experimentally investigate the plasma density and its temperature of the air filament under different pulse repetition rates.In our experiments,the measured average plasma density of the filament is 1.54×10^(17)cm^(-3)and the temperature of the plasma is about 5100 K under 100 Hz pulse repetition rate.The plasma density decreases to1.43×10^(17)cm^(-3)and the temperature increases to 6230 K as the pulse repetition rate increases to 1000 Hz.The experimental observation agrees with the numerical simulation by solving the nonlinear Schr?dinger equations with repetition rate related“low density hole”correction.展开更多
基金supported by the National Natural Science Foundation of China(No.12075306)the Natural Science Foundation of Shanghai(No.22ZR1470900)+1 种基金the Key Research Programs in Frontier Science(No.ZDBSLY-SLH006)the China Postdoctoral Science Foundation(No.2021M703328)。
文摘The plasma mirror system was installed on the 1 PW laser beamline of Shanghai Superintense Ultrafast Laser Facility[SULF]for enhancing the temporal contrast of the laser pulse.About 2 orders of magnitude improvement on pulse contrast was measured on picosecond and nanosecond time scales.The experiments show that high-contrast laser pulses can significantly improve the cutoff energy and quantity of proton beams.Then different target distributions are assumed in particles in cell simulations,which can qualitatively assume the expansion of nanometer-scale foil.The high-contrast laser enables the SULF-1PW beamline to generally be of benefit for many potential applications.
基金This work was supported by the National Key R&D Program of China(Nos.2017YFE0123700 and 2022YFA1604401)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB1603)+2 种基金the National Natural Science Foundation of China(Nos.61925507 and 62375273)the Program of Shanghai Academic/Technology Research Leader(No.18XD1404200)the Shanghai Municipal Science and Technology Major Project(No.2017SHZDZX02).
文摘In this research,we report the latest progress in the suppression of nanosecond prepulses from regenerative amplifier and multipass amplifiers in the SULF-1PW laser.The prepulse generated from the Pockels cell(PC)in a regenerative amplifier is delay-shifted by enlarging the distance between the PC and the nearby cavity mirror,and then removed by the extra pulse pickers outside the regenerative amplifier.The prepulses arising from multipass amplifiers are also further suppressed by adopting a novel amplifier configuration and properly rotating the Ti:sapphire crystals.After the optimizations,the temporal contrast on a nanosecond time scale is promoted to be better than a contrast level of 10^(-9).This research can provide beneficial guidance for the suppression of nanosecond prepulses in the high-peak-power femtosecond laser systems.
基金supported by the Science and Technology Commission of Shanghai Municipality(No.22DZ1100300)。
文摘Overlay(OVL)for patterns placed at two different layers during microchip production is a key parameter that controls the manufacturing process.The tolerance of OVL metrology for the latest microchip needs to be at nanometer scale.This paper discusses the influence on the accuracy and sensitivity of diffraction-based overlay(DBO)after developing inspection and after etching inspection by the asymmetrical deformation of the OVL mark induced by chemical mechanical polishing or etching.We show that the accuracy and sensitivity of DBO metrology can be significantly improved by matching the measuring light wavelength to the thickness between layers and by collecting high-order diffraction signals,promising a solution for future OVL metrology equipment.
基金supported by the National Natural Science Foundation of China(No.12075306)the Natural Science Foundation of Shanghai(No.22ZR1470900)Key Research Programs in Frontier Science(No.ZDBS-LY-SLH006)。
文摘This study entailed the development of a high-gradient modulation of microbunching for traditional radiation frequency accelerators using a minimized system driven by a relativistic Laguerre–Gaussian(LG)laser in three-dimensional particlein-cell(PIC)simulations.It was observed that the LG laser could compress the transverse dimension of the beam to within a 0.7μm radius(divergence≈4.3 mrad),which is considerably lower than the case tuned by a Gaussian laser.In addition,the electron beam could be efficiently modulated to a high degree of bunching effect(>0.5)within~21 fs(~7μm)in the longitudinal direction.Such a high-gradient density modulation driven by an LG laser for pre-bunched,low-divergence,and stable electron beams provides a potential technology for the system minimization of X-ray free-electron lasers(XFELs)and ultrashort-scale(attosecond)electron diffraction research.
基金in part supported by the NSAF(No.U2130123)the International Partnership Program of Chinese Academy of Sciences(Nos.181231KYSB20200033 and 181231KYSB20200040)the Shanghai Science and Technology Program(No.21511105000)。
文摘The characteristics of plasmas play an important role in femtosecond laser filament-based applications.Spectroscopic analysis is used to experimentally investigate the plasma density and its temperature of the air filament under different pulse repetition rates.In our experiments,the measured average plasma density of the filament is 1.54×10^(17)cm^(-3)and the temperature of the plasma is about 5100 K under 100 Hz pulse repetition rate.The plasma density decreases to1.43×10^(17)cm^(-3)and the temperature increases to 6230 K as the pulse repetition rate increases to 1000 Hz.The experimental observation agrees with the numerical simulation by solving the nonlinear Schr?dinger equations with repetition rate related“low density hole”correction.