By removing a part of the structure,the tooth preparation provides restorative space,bonding surface,and finish line for various restorations on abutment.Preparation technique plays critical role in achieving the opti...By removing a part of the structure,the tooth preparation provides restorative space,bonding surface,and finish line for various restorations on abutment.Preparation technique plays critical role in achieving the optimal result of tooth preparation.With successful application of microscope in endodontics for>30 years,there is a full expectation of microscopic dentistry.However,as relatively little progress has been made in the application of microscopic dentistry in prosthodontics,the following assumptions have been proposed:Is it suitable to choose the tooth preparation technique under the naked eye in the microscopic vision?Is there a more accurate preparation technology intended for the microscope?To obtain long-term stable therapeutic effects,is it much easier to achieve maximum tooth preservation and retinal protection and maintain periodontal tissue and oral function health under microscopic vision?Whether the microscopic prosthodontics is a gimmick or a breakthrough in obtaining an ideal tooth preparation should be resolved in microscopic tooth preparation.This article attempts to illustrate the concept,core elements,and indications of microscopic minimally invasive tooth preparation,physiological basis of dental pulp,periodontium and functions involved in tool preparation,position ergonomics and visual basis for dentists,comparison of tooth preparation by naked eyes and a microscope,and comparison of different designs of microscopic minimally invasive tooth preparation techniques.Furthermore,a clinical protocol for microscopic minimally invasive tooth preparation based on target restorative space guide plate has been put forward and new insights on the quantity and shape of microscopic minimally invasive tooth preparation has been provided.展开更多
Large seasonal water-level fluctuations may influence isotopic signatures of primary producers and the types and amounts of these potential food sources accessible to aquatic fauna of Poyang Lake,the largest freshwate...Large seasonal water-level fluctuations may influence isotopic signatures of primary producers and the types and amounts of these potential food sources accessible to aquatic fauna of Poyang Lake,the largest freshwater lake in China.In this study,the isotopic signatures of primary producers and consumers were determined,stable carbon and nitrogen isotope analysis and mixing models were combined to investigate the influence of water levels on the diet and isotopic composition of Poyang Lake fish and invertebrates.Five potential food sources (seston,benthic organic matter,aquatic macrophytes,attached algae,and terrestrial plants),4 species of invertebrates,and 10 species of fish were collected from the lake area during dry and wet seasons between January 2009 and April 2010.The δ 13C values of invertebrates and most fish were within the range of δ 13C values of the potential food sources for both seasons.The δ 13C values of invertebrates and most fish were lower in the dry season than in the wet season,whereas the δ 15N values exhibited different patterns for different species.Mixing models indicated that the most important food sources for common lake fauna were seston in the dry season and aquatic macrophytes and terrestrial plants in the wet season.The fauna were more omnivorous in the wet season than in the dry season.The food web dynamics of Poyang Lake are strongly influenced by changes in the abundance and accessibility of different basal food sources that occur because of seasonal flood pulses.The trophic links within the aquatic communities of Poyang Lake are modified by water-level fluctuations.展开更多
Research progresses on Cherenkov and transit-time high-power microwave(HPM)sources in National University of Defense Technology(NUDT)of China are presented.The research issues are focused on the following aspects.The ...Research progresses on Cherenkov and transit-time high-power microwave(HPM)sources in National University of Defense Technology(NUDT)of China are presented.The research issues are focused on the following aspects.The pulse-shortening phenomenon in O-type Cerenkov HPM devices is suppressed.The compact coaxial relativistic backward-wave oscillators(RBWOs)at low bands are developed.The power efficiency in M-Type HPM tubes without guiding magnetic field increased.The power capacities and power efficiencies in the triaxial klystron amplifier(TKA)and relativistic transit-time oscillator(TTO)at higher frequencies increased.In experiments,some exciting results were obtained.The X-band source generated 2 GW microwave power with a pulse duration of 110 ns in 30 Hz repetition mode.Both L-and P-band compact RBWOs generated over 2 GW microwave power with a power efficiency of over 30%.There is approximately a 75% decline of the volume compared with that of conventional RBWO under the same power capacity conditions.A 1.755 GHz MILO produced 3.1 GW microwave power with power efficiency of 10.4%.A 9.37 GHz TKA produced the 240 MW microwave power with the gain of 34 dB.A 14.3 GHz TTO produced 1 GW microwave power with power efficiency of 20%.展开更多
基金supported by a funding from Chengdu Science and Technology Benefiting Project(Grant number 2016-HM02-00018-SF)
文摘By removing a part of the structure,the tooth preparation provides restorative space,bonding surface,and finish line for various restorations on abutment.Preparation technique plays critical role in achieving the optimal result of tooth preparation.With successful application of microscope in endodontics for>30 years,there is a full expectation of microscopic dentistry.However,as relatively little progress has been made in the application of microscopic dentistry in prosthodontics,the following assumptions have been proposed:Is it suitable to choose the tooth preparation technique under the naked eye in the microscopic vision?Is there a more accurate preparation technology intended for the microscope?To obtain long-term stable therapeutic effects,is it much easier to achieve maximum tooth preservation and retinal protection and maintain periodontal tissue and oral function health under microscopic vision?Whether the microscopic prosthodontics is a gimmick or a breakthrough in obtaining an ideal tooth preparation should be resolved in microscopic tooth preparation.This article attempts to illustrate the concept,core elements,and indications of microscopic minimally invasive tooth preparation,physiological basis of dental pulp,periodontium and functions involved in tool preparation,position ergonomics and visual basis for dentists,comparison of tooth preparation by naked eyes and a microscope,and comparison of different designs of microscopic minimally invasive tooth preparation techniques.Furthermore,a clinical protocol for microscopic minimally invasive tooth preparation based on target restorative space guide plate has been put forward and new insights on the quantity and shape of microscopic minimally invasive tooth preparation has been provided.
基金supported by the National Basic Research Program of China (2009CB421106)the National Natural Science Foundation of China (30870428)the K.C.Wong Education Foundation and the Knowledge Innovation Program of the Chinese Academy of Sciences
文摘Large seasonal water-level fluctuations may influence isotopic signatures of primary producers and the types and amounts of these potential food sources accessible to aquatic fauna of Poyang Lake,the largest freshwater lake in China.In this study,the isotopic signatures of primary producers and consumers were determined,stable carbon and nitrogen isotope analysis and mixing models were combined to investigate the influence of water levels on the diet and isotopic composition of Poyang Lake fish and invertebrates.Five potential food sources (seston,benthic organic matter,aquatic macrophytes,attached algae,and terrestrial plants),4 species of invertebrates,and 10 species of fish were collected from the lake area during dry and wet seasons between January 2009 and April 2010.The δ 13C values of invertebrates and most fish were within the range of δ 13C values of the potential food sources for both seasons.The δ 13C values of invertebrates and most fish were lower in the dry season than in the wet season,whereas the δ 15N values exhibited different patterns for different species.Mixing models indicated that the most important food sources for common lake fauna were seston in the dry season and aquatic macrophytes and terrestrial plants in the wet season.The fauna were more omnivorous in the wet season than in the dry season.The food web dynamics of Poyang Lake are strongly influenced by changes in the abundance and accessibility of different basal food sources that occur because of seasonal flood pulses.The trophic links within the aquatic communities of Poyang Lake are modified by water-level fluctuations.
基金supported by the National Natural Science Funds Fund of China under Grant No.11505288Provincial Natural Science Foundation of Hunanscientific effort project of NUDT.
文摘Research progresses on Cherenkov and transit-time high-power microwave(HPM)sources in National University of Defense Technology(NUDT)of China are presented.The research issues are focused on the following aspects.The pulse-shortening phenomenon in O-type Cerenkov HPM devices is suppressed.The compact coaxial relativistic backward-wave oscillators(RBWOs)at low bands are developed.The power efficiency in M-Type HPM tubes without guiding magnetic field increased.The power capacities and power efficiencies in the triaxial klystron amplifier(TKA)and relativistic transit-time oscillator(TTO)at higher frequencies increased.In experiments,some exciting results were obtained.The X-band source generated 2 GW microwave power with a pulse duration of 110 ns in 30 Hz repetition mode.Both L-and P-band compact RBWOs generated over 2 GW microwave power with a power efficiency of over 30%.There is approximately a 75% decline of the volume compared with that of conventional RBWO under the same power capacity conditions.A 1.755 GHz MILO produced 3.1 GW microwave power with power efficiency of 10.4%.A 9.37 GHz TKA produced the 240 MW microwave power with the gain of 34 dB.A 14.3 GHz TTO produced 1 GW microwave power with power efficiency of 20%.