Deep mineral exploration is increasingly important for finding new mineral resources but there are many uncertainties.Understanding the factors controlling the localization of mineralization at depth can reduce the ri...Deep mineral exploration is increasingly important for finding new mineral resources but there are many uncertainties.Understanding the factors controlling the localization of mineralization at depth can reduce the risk in deep mineral exploration.One of the relatively poorly constrained but important factors is the hydrodynamics of mineralization.This paper reviews the principles of hydrodynamics of mineralization,especially the nature of relationships between mineralization and structures,and their applications to various types of mineralization systems in the context of hydrodynamic linkage between shallow and deep parts of the systems.Three categories of mineralization systems were examined,i.e.,magmatic-hydrothermal systems,structurally controlled hydrothermal systems with uncertain fluid sources,and hydrothermal systems associated with sedimentary basins.The implications for deep mineral exploration,including potentials for new mineral resources at depth,favorable locations for mineralization,as well as uncertainties,are discussed.展开更多
Rabies virus(RABV)is an infectious and neurotropic pathogen that causes rabies and infects humans and almost all warm-blooded animals,posing a great threat to people and public safety.It is well known that innate immu...Rabies virus(RABV)is an infectious and neurotropic pathogen that causes rabies and infects humans and almost all warm-blooded animals,posing a great threat to people and public safety.It is well known that innate immunity is the critical first line of host defense against viral infection.It monitors the invading pathogens by recognizing the pathogen-associated molecular patterns and danger-associated molecular patterns through pattern-recognition receptors,leading to the production of type I interferons(IFNα/β),inflammatory cytokines,and chemokines,or the activation of autophagy or apoptosis to inhibit virus replication.In the case of RABV,the innate immune response is usually triggered when the skin or muscle is bitten or scratched.However,RABV has evolved many ways to escape or even hijack innate immune response to complete its own replication and eventually invades the central nervous system(CNS).Once RABV reaches the CNS,it cannot be wiped out by the immune system or any drugs.Therefore,a better understanding of the interplay between RABV and innate immu-nity is necessary to develop effective strategies to combat its infection.Here,we review the innate immune responses induced by RABV and illustrate the antagonism mechanisms of RABV to provide new insights for the control of rabies.展开更多
Many studies suggest that severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)can infect various animals and transmit among animals,and even to humans,posing a threat to humans and animals.There is an urgent ne...Many studies suggest that severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)can infect various animals and transmit among animals,and even to humans,posing a threat to humans and animals.There is an urgent need to develop inexpensive and efficient animal vaccines to prevent and control coronavirus disease 2019(COVID-19)in animals.Rabies virus(RABV)is another important zoonotic pathogen that infects almost all warmblooded animals and poses a great public health threat.The present study constructed two recombinant chimeric viruses expressing the S1 and RBD proteins of the SARS-CoV-2 Wuhan01 strain based on a reverse genetic system of the RABV SRV9 strain and evaluated their immunogenicity in mice,cats and dogs.The results showed that both inactivated recombinant viruses induced durable neutralizing antibodies against SARS-CoV-2 and RABV and a strong cellular immune response in mice.Notably,inactivated SRV-nCoV-RBD induced earlier antibody production than SRV-nCoV-S1,which was maintained at high levels for longer periods.Inactivated SRV-nCoV-RBD induced neutralizing antibodies against both SARS-CoV-2 and RABV in cats and dogs,with a relatively broadspectrum cross-neutralization capability against the SARS-CoV-2 pseudoviruses including Alpha,Beta,Gamma,Delta,and Omicron,showing potential to be used as a safe bivalent vaccine candidate against COVID-19 and rabies in animals.展开更多
Herein,an intense electrochemiluminescence(ECL)was achieved based on Pt hollow nanospheres/rubrene nanoleaves(Pt HNSs/Rub NLs)without the addition of any coreactant,which was employed for ultrasensitive detection of c...Herein,an intense electrochemiluminescence(ECL)was achieved based on Pt hollow nanospheres/rubrene nanoleaves(Pt HNSs/Rub NLs)without the addition of any coreactant,which was employed for ultrasensitive detection of carcinoembryonic antigen(CEA)coupled with an M-shaped DNA walker(M-DNA walker)as signal switch.Specifically,in comparison with platinum nanoparticles(Pt NPs),Pt HNSs revealed excellent catalytic performance and pore confinement-enhanced ECL,which could significantly amplify ECL intensity of Rub NLs/dissolved O_(2)(DO)binary system.Then,the tracks and M-DNA walker were confined on the Pt HNSs simultaneously to promote the reaction efficiency,whose M-structure boosted the interaction sites between walking strands and tracks and reduced the rigidity of their recognition.Once the CEA approached the sensing interface,the M-DNA walker was activated based on highly specific aptamer recognition to recover ECL intensity with the assistance of exonucleaseⅢ(ExoⅢ).As proof of concept,the“on-off-on”switch aptasensor was constructed for CEA detection with a low detection limit of 0.20 fg/m L.The principle of the constructed ECL aptasensor also enables a universal platform for sensitive detection of other tumor markers.展开更多
The nitrogen-vacancy(NV)center in diamond has been developed as a promising platform for quantum sensing,especially for magnetic field measurements in the nano-tesla range with a nano-meter resolution.Optical spin rea...The nitrogen-vacancy(NV)center in diamond has been developed as a promising platform for quantum sensing,especially for magnetic field measurements in the nano-tesla range with a nano-meter resolution.Optical spin readout performance has a direct effect on the signal-to-noise ratio(SNR)of experiments.In this work,we introduce an online optimization method to customize the laser waveform for readout.Both simulations and experiments reveal that our new scheme optimizes the optically detected magnetic resonance in NV center.The SNR of optical spin readout has been witnessed a 44.1%increase in experiments.In addition,we applied the scheme to the Rabi oscillation experiment,which shows an improvement of 46.0%in contrast and a reduction of 12.1%in mean deviation compared to traditional constant laser power SNR optimization.This scheme is promising to improve sensitivities for a wide range of NV-based applications in the future.展开更多
基金supported by an NSERC-DG grant(Grant No.RGPIN-2018-06458,to Chi)National Natural Science Foundation of China grant(Grant No.41930428,to Xu)。
文摘Deep mineral exploration is increasingly important for finding new mineral resources but there are many uncertainties.Understanding the factors controlling the localization of mineralization at depth can reduce the risk in deep mineral exploration.One of the relatively poorly constrained but important factors is the hydrodynamics of mineralization.This paper reviews the principles of hydrodynamics of mineralization,especially the nature of relationships between mineralization and structures,and their applications to various types of mineralization systems in the context of hydrodynamic linkage between shallow and deep parts of the systems.Three categories of mineralization systems were examined,i.e.,magmatic-hydrothermal systems,structurally controlled hydrothermal systems with uncertain fluid sources,and hydrothermal systems associated with sedimentary basins.The implications for deep mineral exploration,including potentials for new mineral resources at depth,favorable locations for mineralization,as well as uncertainties,are discussed.
基金National Natural Science Foundation of China,Grant/Award Number:31872487。
文摘Rabies virus(RABV)is an infectious and neurotropic pathogen that causes rabies and infects humans and almost all warm-blooded animals,posing a great threat to people and public safety.It is well known that innate immunity is the critical first line of host defense against viral infection.It monitors the invading pathogens by recognizing the pathogen-associated molecular patterns and danger-associated molecular patterns through pattern-recognition receptors,leading to the production of type I interferons(IFNα/β),inflammatory cytokines,and chemokines,or the activation of autophagy or apoptosis to inhibit virus replication.In the case of RABV,the innate immune response is usually triggered when the skin or muscle is bitten or scratched.However,RABV has evolved many ways to escape or even hijack innate immune response to complete its own replication and eventually invades the central nervous system(CNS).Once RABV reaches the CNS,it cannot be wiped out by the immune system or any drugs.Therefore,a better understanding of the interplay between RABV and innate immu-nity is necessary to develop effective strategies to combat its infection.Here,we review the innate immune responses induced by RABV and illustrate the antagonism mechanisms of RABV to provide new insights for the control of rabies.
基金funded by the National Key Research and Development Program of China(grant No.2021YFC2600202)the National Natural Science Foundation of China(grant numbers 31872487).
文摘Many studies suggest that severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)can infect various animals and transmit among animals,and even to humans,posing a threat to humans and animals.There is an urgent need to develop inexpensive and efficient animal vaccines to prevent and control coronavirus disease 2019(COVID-19)in animals.Rabies virus(RABV)is another important zoonotic pathogen that infects almost all warmblooded animals and poses a great public health threat.The present study constructed two recombinant chimeric viruses expressing the S1 and RBD proteins of the SARS-CoV-2 Wuhan01 strain based on a reverse genetic system of the RABV SRV9 strain and evaluated their immunogenicity in mice,cats and dogs.The results showed that both inactivated recombinant viruses induced durable neutralizing antibodies against SARS-CoV-2 and RABV and a strong cellular immune response in mice.Notably,inactivated SRV-nCoV-RBD induced earlier antibody production than SRV-nCoV-S1,which was maintained at high levels for longer periods.Inactivated SRV-nCoV-RBD induced neutralizing antibodies against both SARS-CoV-2 and RABV in cats and dogs,with a relatively broadspectrum cross-neutralization capability against the SARS-CoV-2 pseudoviruses including Alpha,Beta,Gamma,Delta,and Omicron,showing potential to be used as a safe bivalent vaccine candidate against COVID-19 and rabies in animals.
基金financially supported by the National Natural Science Foundation(NNSF)of China(No.22022408)the Chongqing Talents Personnel Support Program(No.NCQYC201905067)the Fundamental Research Funds for the Central Universities(No.XDJK2019TJ002)。
文摘Herein,an intense electrochemiluminescence(ECL)was achieved based on Pt hollow nanospheres/rubrene nanoleaves(Pt HNSs/Rub NLs)without the addition of any coreactant,which was employed for ultrasensitive detection of carcinoembryonic antigen(CEA)coupled with an M-shaped DNA walker(M-DNA walker)as signal switch.Specifically,in comparison with platinum nanoparticles(Pt NPs),Pt HNSs revealed excellent catalytic performance and pore confinement-enhanced ECL,which could significantly amplify ECL intensity of Rub NLs/dissolved O_(2)(DO)binary system.Then,the tracks and M-DNA walker were confined on the Pt HNSs simultaneously to promote the reaction efficiency,whose M-structure boosted the interaction sites between walking strands and tracks and reduced the rigidity of their recognition.Once the CEA approached the sensing interface,the M-DNA walker was activated based on highly specific aptamer recognition to recover ECL intensity with the assistance of exonucleaseⅢ(ExoⅢ).As proof of concept,the“on-off-on”switch aptasensor was constructed for CEA detection with a low detection limit of 0.20 fg/m L.The principle of the constructed ECL aptasensor also enables a universal platform for sensitive detection of other tumor markers.
基金This work was supported by the National Key R&D Program of China(Grant Nos.2018YFA0306600 and 2019YFA0308100)the National Natural Science Foundation of China(Grant Nos.92265114,92265204,and 11875159)the Research Initiation Project(No.K2022MB0PI02)of Zhejiang Lab.
文摘The nitrogen-vacancy(NV)center in diamond has been developed as a promising platform for quantum sensing,especially for magnetic field measurements in the nano-tesla range with a nano-meter resolution.Optical spin readout performance has a direct effect on the signal-to-noise ratio(SNR)of experiments.In this work,we introduce an online optimization method to customize the laser waveform for readout.Both simulations and experiments reveal that our new scheme optimizes the optically detected magnetic resonance in NV center.The SNR of optical spin readout has been witnessed a 44.1%increase in experiments.In addition,we applied the scheme to the Rabi oscillation experiment,which shows an improvement of 46.0%in contrast and a reduction of 12.1%in mean deviation compared to traditional constant laser power SNR optimization.This scheme is promising to improve sensitivities for a wide range of NV-based applications in the future.