Along with the role transformation of biomaterials from bioinert substitute to regenerative inducer, the biological effect and mechanism of material-organism interaction become more important. Since most of animal tes...Along with the role transformation of biomaterials from bioinert substitute to regenerative inducer, the biological effect and mechanism of material-organism interaction become more important. Since most of animal tests and cellular experiments stay on the phenomenon description instead of mechanism interpretation, the development of proteomics technologies provides a golden opportunity to uncover the molecular interaction mechanism between biomaterial-organism on whole scale. This review summarizes current application of proteomics in biological effect and mechanism study of biomaterials, and discusses the development and challenges for future studies.展开更多
基金support of Natural Science Foundation of Guangdong Province, China (Nos. 2016A030310245 and 2016A030310244)China Postdoctoral Science Foundation (No. 2016M591017)Key Projects in the National Science &Technology Pillar program during the thirteenth Five-year Plan Period (No. 2016YFC1102800)
文摘Along with the role transformation of biomaterials from bioinert substitute to regenerative inducer, the biological effect and mechanism of material-organism interaction become more important. Since most of animal tests and cellular experiments stay on the phenomenon description instead of mechanism interpretation, the development of proteomics technologies provides a golden opportunity to uncover the molecular interaction mechanism between biomaterial-organism on whole scale. This review summarizes current application of proteomics in biological effect and mechanism study of biomaterials, and discusses the development and challenges for future studies.