We consider dual Toeplitz operators on the orthogonal complements of the FockSobolev spaces of all nonnegative real orders.First,for symbols in a certain class containing all bounded functions,we study the problem of ...We consider dual Toeplitz operators on the orthogonal complements of the FockSobolev spaces of all nonnegative real orders.First,for symbols in a certain class containing all bounded functions,we study the problem of when an operator which is finite sums of the dual Toeplitz products is compact or zero.Next,for bounded symbols,we construct a symbol map and exhibit a short exact sequence associated with the C^(*)-algebra generated by all dual Toeplitz operators with bounded symbols.展开更多
We consider Toeplitz operators Tu with symbol u on the Bergman space of the unit ball,and then study the convergences and summability for the sequences of powers of Toeplitz operators.We first charactreize analytic sy...We consider Toeplitz operators Tu with symbol u on the Bergman space of the unit ball,and then study the convergences and summability for the sequences of powers of Toeplitz operators.We first charactreize analytic symbolsφfor which the sequence Tφ*kf or Tφkf converges to 0 or∞as k→∞in norm for every nonzero Bergman function f.Also,we characterize analytic symbolsφfor which the norm of such a sequence is summable or not summable.We also study the corresponding problems on an infinite direct sum of Bergman spaces as a generalization of our result.展开更多
基金supported by the NSFC(12271134,11771401)supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1I1A3A01041943)。
文摘We consider dual Toeplitz operators on the orthogonal complements of the FockSobolev spaces of all nonnegative real orders.First,for symbols in a certain class containing all bounded functions,we study the problem of when an operator which is finite sums of the dual Toeplitz products is compact or zero.Next,for bounded symbols,we construct a symbol map and exhibit a short exact sequence associated with the C^(*)-algebra generated by all dual Toeplitz operators with bounded symbols.
基金supported by NSFC(11771401)the last author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1I1A3A01041943)。
文摘We consider Toeplitz operators Tu with symbol u on the Bergman space of the unit ball,and then study the convergences and summability for the sequences of powers of Toeplitz operators.We first charactreize analytic symbolsφfor which the sequence Tφ*kf or Tφkf converges to 0 or∞as k→∞in norm for every nonzero Bergman function f.Also,we characterize analytic symbolsφfor which the norm of such a sequence is summable or not summable.We also study the corresponding problems on an infinite direct sum of Bergman spaces as a generalization of our result.