由于单金属Bi在CO_(2)还原反应(CO_(2)RR)中效率较低,通过表面工程复合材料提高电导率和产率是一种有吸引力的方法.在此,我们重构了在三维纳米孔铜结构中的原位生长金属Bi纳米颗粒.得益于三维纳米多孔导电网络和Cu与Bi之间的强相互作用,...由于单金属Bi在CO_(2)还原反应(CO_(2)RR)中效率较低,通过表面工程复合材料提高电导率和产率是一种有吸引力的方法.在此,我们重构了在三维纳米孔铜结构中的原位生长金属Bi纳米颗粒.得益于三维纳米多孔导电网络和Cu与Bi之间的强相互作用,Bi@np-Cu费米能级向上移动,表现出优异的电催化二氧化碳还原性能.Bi@np-Cu在-0.97 V的电位下具有97.7%的甲酸法拉第效率,电流密度为82 mA cm^(-2).重要的是,该催化剂在连续催化反应40 h后仍能实现超过90%的法拉第效率.DFT计算表明,np-Cu有效地调节了Bi的电子态,优化了中间吸附能,从而提高了Bi的本征活性.这项工作为纳米多孔金属在催化中的应用提供了一个新视角.展开更多
基金supported by the National Key R&D Program of China (2021YFB3802900)the Major Program of the National Natural Science Foundation of China (52192604)+4 种基金the Higher Educational Youth Innovation Science and Technology Program Shandong Province(2021KJ022)Taishan Scholars Program (tsqn201909107)the Natural Science Foundation of Shandong Province (ZR2020QF077)the National Natural Science Foundation of China (62104131)the Postdoctoral Science Foundation of Shandong Province (4456322)。
文摘由于单金属Bi在CO_(2)还原反应(CO_(2)RR)中效率较低,通过表面工程复合材料提高电导率和产率是一种有吸引力的方法.在此,我们重构了在三维纳米孔铜结构中的原位生长金属Bi纳米颗粒.得益于三维纳米多孔导电网络和Cu与Bi之间的强相互作用,Bi@np-Cu费米能级向上移动,表现出优异的电催化二氧化碳还原性能.Bi@np-Cu在-0.97 V的电位下具有97.7%的甲酸法拉第效率,电流密度为82 mA cm^(-2).重要的是,该催化剂在连续催化反应40 h后仍能实现超过90%的法拉第效率.DFT计算表明,np-Cu有效地调节了Bi的电子态,优化了中间吸附能,从而提高了Bi的本征活性.这项工作为纳米多孔金属在催化中的应用提供了一个新视角.