Dams and reservoirs play an essential role in regulating and managing water resources.Since the middle of the 20th century,the growing demand for water and hydropower has led to an unprecedented boom in reservoir cons...Dams and reservoirs play an essential role in regulating and managing water resources.Since the middle of the 20th century,the growing demand for water and hydropower has led to an unprecedented boom in reservoir construction worldwide[1,2].Meanwhile,reservoir construction has also resulted in a variety of ecological and socioeconomic impacts[3–5].Reservoirs transform natural flow regimes into conditions favored by human demand.The associated flow regulations,especially in reservoirs constructed in recent decades(e.g.,after 2000)with greater seasonal variability[6,7],represent a strong human-induced alteration of the hydrologic cycle.As reservoir construction continues to boom in many parts of the world,an up-to-date and openaccess inventory of reservoirs worldwide remains critically desired.展开更多
Lake-effect snowfall(LES)occurs when cold air moves across open lakes.LES is expected to occur more frequently over the TP,due to the intensified lake expansion caused by intensified global warming.Thus,there is an ur...Lake-effect snowfall(LES)occurs when cold air moves across open lakes.LES is expected to occur more frequently over the TP,due to the intensified lake expansion caused by intensified global warming.Thus,there is an urgent need to comprehensively assess the LES over the TP.Here,we revealed that the LES is triggered by westerly southward shift leading to the drop in air temperature and is positively correlated with lake area,wind speed and longitude across 12 large lakes(>300 km^(2))based on satellite observations and reanalysis data.Using a sensitivity model simulation,we determined that large lakes in the southern TP contributed to more than 50%of the snowfall in the downwind area in 2013.Projections indicate that the westerly-triggered LES will increase under the future RCP4.5 climate warming scenario,highlighting the importance of developing adaptive policies to address the growing risks associated with future LES.展开更多
基金supported by the National Key Research and Development Program of China(2022YFF0711603)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23100102,XDA19090120)+3 种基金the National Natural Science Foundation of China(42371399,42301431)the Science and Technology Planning Project of NIGLAS(2022NIGLAS-CJH04,2022NIGLAS-TJ18)supported by the NASA Surface Water and Ocean Topography(SWOT)Science Team(80NSSC20K1143)supported by the CNES TOSCA program of research for his role as PI of the Surface Water and Ocean Topography(SWOT)mission。
文摘Dams and reservoirs play an essential role in regulating and managing water resources.Since the middle of the 20th century,the growing demand for water and hydropower has led to an unprecedented boom in reservoir construction worldwide[1,2].Meanwhile,reservoir construction has also resulted in a variety of ecological and socioeconomic impacts[3–5].Reservoirs transform natural flow regimes into conditions favored by human demand.The associated flow regulations,especially in reservoirs constructed in recent decades(e.g.,after 2000)with greater seasonal variability[6,7],represent a strong human-induced alteration of the hydrologic cycle.As reservoir construction continues to boom in many parts of the world,an up-to-date and openaccess inventory of reservoirs worldwide remains critically desired.
基金supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences(CAS2022067)the Basic Science Center for Tibetan Plateau Earth System(41988101)。
文摘Lake-effect snowfall(LES)occurs when cold air moves across open lakes.LES is expected to occur more frequently over the TP,due to the intensified lake expansion caused by intensified global warming.Thus,there is an urgent need to comprehensively assess the LES over the TP.Here,we revealed that the LES is triggered by westerly southward shift leading to the drop in air temperature and is positively correlated with lake area,wind speed and longitude across 12 large lakes(>300 km^(2))based on satellite observations and reanalysis data.Using a sensitivity model simulation,we determined that large lakes in the southern TP contributed to more than 50%of the snowfall in the downwind area in 2013.Projections indicate that the westerly-triggered LES will increase under the future RCP4.5 climate warming scenario,highlighting the importance of developing adaptive policies to address the growing risks associated with future LES.