期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ZmCYP90D1 regulates maize internode development by modulating brassinosteroid-mediated cell division and growth
1
作者 Canran Sun Yang Liu +8 位作者 Guofang Li Yanle Chen Mengyuan Li Ruihua Yang yongtian qin Yongqiang Chen Jinpeng Cheng Jihua Tang Zhiyuan Fu 《The Crop Journal》 SCIE CSCD 2024年第1期58-67,共10页
Plant height(PH)is associated with lodging resistance and planting density,which is regulated by a complicated gene network.In this study,we identified a spontaneous dwarfing mutation in maize,m30,with decreased inter... Plant height(PH)is associated with lodging resistance and planting density,which is regulated by a complicated gene network.In this study,we identified a spontaneous dwarfing mutation in maize,m30,with decreased internode number and length but increased internode diameter.A candidate gene,ZmCYP90D1,which encodes a member of the cytochrome P450 family,was isolated by map-based cloning.ZmCYP90D1 was constitutively expressed and showed highest expression in basal internodes,and its protein was targeted to the nucleus.A G-to-A substitution was identified to be the causal mutation,which resulted in a truncated protein in m30.Loss of function of ZmCYP90D1 changed expression of hormoneresponsive genes,in particular brassinosteroid(BR)-responsive genes which is mainly involved in cell cycle regulation and cell wall extension and modification in plants.The concentration of typhasterol(TY),a downstream intermediate of ZmCYP90D1 in the BR pathway,was reduced.A haplotype conferring dwarfing without reducing yield was identified.ZmCYP90D1 was inferred to influence plant height and stalk diameter via hormone-mediated cell division and cell growth via the BR pathway. 展开更多
关键词 MAIZE ZmCYP90D1 BR biosynthesis Dwarf plant
下载PDF
A peptide chain release factor 2a gene regulates maize kernel development by modulating mitochondrial function
2
作者 Hui Zhang Yijian Feng +9 位作者 Kunyang Song Guofang Li Jiao Jin Jingjing Gao yongtian qin Hongqiu Wang Jinpeng Cheng Zonghua Liu Jihua Tang Zhiyuan Fu 《The Crop Journal》 SCIE CSCD 2023年第6期1731-1741,共11页
Mitochondrial protein translation that is essential for aerobic energy production includes four essential steps of the mitochondrial ribosome cycle,namely,initiation,elongation,termination of the polypeptide,and ribos... Mitochondrial protein translation that is essential for aerobic energy production includes four essential steps of the mitochondrial ribosome cycle,namely,initiation,elongation,termination of the polypeptide,and ribosome recycling.Translation termination initiates when a stop codon enters the A site of the mitochondrial ribosome where it is recognized by a dedicated peptide release factor(RF).However,RFs and mechanisms involved in translation in plant mitochondria,especially in monocotyledons,remain largely unknown.Here,we identified a crumpled kernel(crk5 allele)mutant,with significantly decreased kernel size,100-kernel weight,and an embryo-lethal phenotype.The Crk5 allele was isolated using map-based cloning and found to encode a mitochondrial localization RF2a.As it is an ortholog of Arabidopsis mitochondrial RF2a,we named the gene ZmmtRF2a.ZmmtRF2a is missing the 5th–7th exons in the crk5 resulting in deletion of domains containing motifs GGQ and SPF that are essential for release activity of RF,mitochondrial ribosome binding,and stop codon recognition.Western blot and qRT-PCR analyses indicate that the crk5 mutation results in abnormal mitochondrion structure and function.Intriguingly,we observed a feedback loop in the crk5 with up-regulated transcript levels detected for several mitochondrial ribosome and mitochondrial-related components,in particular mitochondrial complexes CI,CIV,and a ribosome assembly related PPR.Together,our data support a crucial role for ZmmtRF2a in regulation of mitochondrial structure and function in maize. 展开更多
关键词 Embryo lethality MITOCHONDRION Peptide release factor 2 Zea mays
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部