The neutron-induced total cross-section of ^(209)Bi is crucial for the physical design and safety assessment of lead-based fast reactors, and the quality of experimental data should be improved for evaluation and appl...The neutron-induced total cross-section of ^(209)Bi is crucial for the physical design and safety assessment of lead-based fast reactors, and the quality of experimental data should be improved for evaluation and application.A recent experiment was conducted on the back-streaming white neutron beamline(Back-n) at the China Spallation Neutron Source(CSNS) using the neutron total cross-section spectrometer(NTOX). The neutron energy was determined using a fast multi-cell fission chamber and the time-of-flight technique. Two high-purity bismuth samples,6 mm and 20 mm in thickness, were chosen for neutron transmission measurements and comparisons. The neutron total cross-sections of ^(209)Bi, ranging from 0.3 e V to 20 Me V, were derived considering neutron flight time determination, flight path calibration, and background subtraction. A comparison of the experimental results with the data in the ENDF/B-VⅢ.0 library showed fair agreement, and the point-wise cross-sections were found to be consistent with existing experimental data. Special attention was given to the determination of resonance parameters, which were analyzed using the R-matrix code SAMMY and Bayesian method in the 0.5 ke V to 20 ke V energy range. The extracted resonance parameters were compared to previously reported results and evaluated data. This study is recognized as the first one where the neutron total cross-section of bismuth across such a broad energy spectrum is measured in a single measurement or experiment, and it provides valuable data for the assessment of related reaction information for evaluated libraries and the advancement of lead-bismuth-based nuclear systems.展开更多
基金the National Natural Science Foundation of China(12375296)the Key Laboratory of Nuclear Data Foundation(JCKY2022201C153)+1 种基金the National Key Research and Development Plan(2022YFA1603303)the Natural Science Foundation of Hunan Province of China(2021JJ40444,2020RC3054)。
文摘The neutron-induced total cross-section of ^(209)Bi is crucial for the physical design and safety assessment of lead-based fast reactors, and the quality of experimental data should be improved for evaluation and application.A recent experiment was conducted on the back-streaming white neutron beamline(Back-n) at the China Spallation Neutron Source(CSNS) using the neutron total cross-section spectrometer(NTOX). The neutron energy was determined using a fast multi-cell fission chamber and the time-of-flight technique. Two high-purity bismuth samples,6 mm and 20 mm in thickness, were chosen for neutron transmission measurements and comparisons. The neutron total cross-sections of ^(209)Bi, ranging from 0.3 e V to 20 Me V, were derived considering neutron flight time determination, flight path calibration, and background subtraction. A comparison of the experimental results with the data in the ENDF/B-VⅢ.0 library showed fair agreement, and the point-wise cross-sections were found to be consistent with existing experimental data. Special attention was given to the determination of resonance parameters, which were analyzed using the R-matrix code SAMMY and Bayesian method in the 0.5 ke V to 20 ke V energy range. The extracted resonance parameters were compared to previously reported results and evaluated data. This study is recognized as the first one where the neutron total cross-section of bismuth across such a broad energy spectrum is measured in a single measurement or experiment, and it provides valuable data for the assessment of related reaction information for evaluated libraries and the advancement of lead-bismuth-based nuclear systems.