期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于无人直升机平台的航磁系统集成与应用 被引量:7
1
作者 西永在 路宁 +6 位作者 张兰 李军峰 张富明 吴珊 廖桂香 贲放 黄威 《物探与化探》 CAS 北大核心 2019年第1期125-131,共7页
笔者介绍了无人直升机航磁系统的研发与集成,采用无人直升机作为飞行平台,搭载高精度航空磁测系统,具有低成本、高效率、不受机场跑道限制、可夜航、按设计测线全自主导航飞行等特点。该系统分别完成了磁补偿试验飞行与实际应用工作,补... 笔者介绍了无人直升机航磁系统的研发与集成,采用无人直升机作为飞行平台,搭载高精度航空磁测系统,具有低成本、高效率、不受机场跑道限制、可夜航、按设计测线全自主导航飞行等特点。该系统分别完成了磁补偿试验飞行与实际应用工作,补偿精度达到0.046 9 n T,测量成果与测区内以往航磁成果对比,其反映的地磁场特征形态基本一致,验证了该系统的有效性,航磁异常等值线在细节上表现更细致。本系统为大比例尺、高精度、小面积的航磁测量工作提供了一种高效灵活的工作手段。 展开更多
关键词 无人直升机 航磁系统 磁补偿试验 集成与应用
下载PDF
Modified extremal optimization for the hard maximum satisfiability problem 被引量:4
2
作者 Guo-qiang ZENG 1,yong-zai lu 2,Wei-Jie MAO 2 (1 College of Physics & Electronic Information Engineering,Wenzhou University,Wenzhou 325035,China) (2 State Key Laboratory of Industrial Control Technology,Institute of Cyber-Systems and Control,Zhejiang University,Hangzhou 310027,China) 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第7期589-596,共8页
Based on our recent study on probability distributions for evolution in extremal optimization (EO),we propose a modified framework called EOSAT to approximate ground states of the hard maximum satisfiability (MAXSAT) ... Based on our recent study on probability distributions for evolution in extremal optimization (EO),we propose a modified framework called EOSAT to approximate ground states of the hard maximum satisfiability (MAXSAT) problem,a generalized version of the satisfiability (SAT) problem.The basic idea behind EOSAT is to generalize the evolutionary probability distribution in the Bose-Einstein-EO (BE-EO) algorithm,competing with other popular algorithms such as simulated annealing and WALKSAT.Experimental results on the hard MAXSAT instances from SATLIB show that the modified algorithms are superior to the original BE-EO algorithm. 展开更多
关键词 Extremal optimization (EO) EVOLUTION Probability distributions Maximum satisfiability (MAXSAT) problem
原文传递
无人机航空磁测在滩涂区地质调查的应用试验 被引量:3
3
作者 西永在 吴珊 +3 位作者 廖桂香 刘俊杰 路宁 李永博 《物探与化探》 CAS 北大核心 2021年第2期355-360,共6页
对CH-3型无人机航磁测量系统的测控软硬件、差分GPS定位数据同步、多系统适应性改装以及水平横向梯度测量等方面进行了改进完善,在江苏如东县沿岸滩涂区开展了1∶2.5万大比例尺航磁测量实验,验证了改进系统的高精度测控、稳定性等关键性... 对CH-3型无人机航磁测量系统的测控软硬件、差分GPS定位数据同步、多系统适应性改装以及水平横向梯度测量等方面进行了改进完善,在江苏如东县沿岸滩涂区开展了1∶2.5万大比例尺航磁测量实验,验证了改进系统的高精度测控、稳定性等关键性能,在隐伏岩体、推断断裂构造、磁性界面分布等方面取得了较好的应用效果,表明在为滩涂区开发利用提供有效的基础地质和工程地质等方面具有广阔的应用前景。 展开更多
关键词 无人机航磁 滩涂区 系统改进
下载PDF
Extremal optimization for optimizing kernel function and its parameters in support vector regression 被引量:1
4
作者 Peng CHEN yong-zai lu 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第4期297-306,共10页
The performance of the support vector regression (SVR) model is sensitive to the kernel type and its parameters.The determination of an appropriate kernel type and the associated parameters for SVR is a challenging re... The performance of the support vector regression (SVR) model is sensitive to the kernel type and its parameters.The determination of an appropriate kernel type and the associated parameters for SVR is a challenging research topic in the field of support vector learning.In this study,we present a novel method for simultaneous optimization of the SVR kernel function and its parameters,formulated as a mixed integer optimization problem and solved using the recently proposed heuristic 'extremal optimization (EO)'.We present the problem formulation for the optimization of the SVR kernel and parameters,the EO-SVR algorithm,and experimental tests with five benchmark regression problems.The results of comparison with other traditional approaches show that the proposed EO-SVR method provides better generalization performance by successfully identifying the optimal SVR kernel function and its parameters. 展开更多
关键词 Support vector regression (SVR) Extremal optimization (EO) Parameter optimization Kernel function optimization
原文传递
Memetic algorithms-based neural network learning for basic oxygen furnace endpoint prediction
5
作者 Peng CHEN yong-zai lu 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第11期841-848,共8页
Based on the critical position of the endpoint quality prediction for basic oxygen furnaces (BOFs) in steelmaking, and the latest results in computational intelligence (C1), this paper deals with the development ... Based on the critical position of the endpoint quality prediction for basic oxygen furnaces (BOFs) in steelmaking, and the latest results in computational intelligence (C1), this paper deals with the development of a novel memetic algorithm (MA) for neural network (NN) lcarnmg. Included in this is the integration of extremal optimization (EO) and Levenberg-Marquardt (LM) pradicnt search, and its application in BOF endpoint quality prediction. The fundamental analysis reveals that the proposed EO-LM algorithm may provide superior performance in generalization, computation efficiency, and avoid local minima, compared to traditional NN learning methods. Experimental results with production-scale BOF data show that the proposed method can effectively improve the NN model for BOF endpoint quality prediction. 展开更多
关键词 Memetic algorithm (MA) Neural network (NN) learning Back propagation (BP) Extremal optimization (EO) gevenberg-Marquardt (LM) gradient search Basic oxygen furnace (BOF)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部