To use the potential heat of molten blast furnace slag completely, a CaO-Al2O3-SiO2 system glass (MSG) was prepared from the molten industrial slag. The corresponding method proposed in this study utilized both slag...To use the potential heat of molten blast furnace slag completely, a CaO-Al2O3-SiO2 system glass (MSG) was prepared from the molten industrial slag. The corresponding method proposed in this study utilized both slag and its potential heat, improving the production rate and avoiding the environmental pollution. Using appropriate techniques, an MSG with uniform color and superior performances was produced. Based on the experimental results and phase diagram, the chemical composition of MSG by mass is obtained as follows:CaO 27%-33%, SiO2 42%-51%, Al2O3 11%-14%, MgO 6%-8%, and Na2O+K2O 1%-4%. Thermodynamic processes of MSG preparation were analyzed, and the phases and microstructures of MSG were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that alkali metal oxides serve as the fluxes, calcium oxide serves as the stabilizer, and alumina reinforces the Si-O network. XRD and SEM analyses show that, the prepared MSG displays the glass-feature patterns, the melting process is more complete, and the melt viscosity is lowered with an increase in calcium oxide content;however, a continuous increase in slag content induces the crystalli-zation of glass, leading to the formation of glass subphase. The optimum content of molten slag in MSG is 67.37wt%. With respect to bend-ing strength and acid/alkali resistance, the performance of MSG is better than that of ordinary marble.展开更多
如何在单相畸变电网中快速准确的获取基波以及所需的特定次谐波信息,对并网型电力电子变换器的控制系统而言是十分重要的。针对这一问题,提出了一种基于通用信号延迟叠加算子(generalized delayed signal superposition operator,GDSS)...如何在单相畸变电网中快速准确的获取基波以及所需的特定次谐波信息,对并网型电力电子变换器的控制系统而言是十分重要的。针对这一问题,提出了一种基于通用信号延迟叠加算子(generalized delayed signal superposition operator,GDSS)的单相锁相环结构,用于恶劣电网下系统基波以及多重谐波信息的检测。这种锁相环结构包含了多个具有很强频率选择特性的GDSS算子,能够在半个基波周期内从输入信号中分离出所需要的基波以及多个谐波频率信息,并且其参数以及GDSS算子个数还能够根据实际控制系统需求灵活调整。在各种工况下的仿真及实验表明,所提的锁相方法能够在恶劣电网下快速准确的获取基波及多重谐波信息,并且面对电网常见扰动时具有很强的鲁棒性。展开更多
基金financially supported by the Natural Science Foundation of Hebei Province of China(No.E2010000963)
文摘To use the potential heat of molten blast furnace slag completely, a CaO-Al2O3-SiO2 system glass (MSG) was prepared from the molten industrial slag. The corresponding method proposed in this study utilized both slag and its potential heat, improving the production rate and avoiding the environmental pollution. Using appropriate techniques, an MSG with uniform color and superior performances was produced. Based on the experimental results and phase diagram, the chemical composition of MSG by mass is obtained as follows:CaO 27%-33%, SiO2 42%-51%, Al2O3 11%-14%, MgO 6%-8%, and Na2O+K2O 1%-4%. Thermodynamic processes of MSG preparation were analyzed, and the phases and microstructures of MSG were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that alkali metal oxides serve as the fluxes, calcium oxide serves as the stabilizer, and alumina reinforces the Si-O network. XRD and SEM analyses show that, the prepared MSG displays the glass-feature patterns, the melting process is more complete, and the melt viscosity is lowered with an increase in calcium oxide content;however, a continuous increase in slag content induces the crystalli-zation of glass, leading to the formation of glass subphase. The optimum content of molten slag in MSG is 67.37wt%. With respect to bend-ing strength and acid/alkali resistance, the performance of MSG is better than that of ordinary marble.
文摘如何在单相畸变电网中快速准确的获取基波以及所需的特定次谐波信息,对并网型电力电子变换器的控制系统而言是十分重要的。针对这一问题,提出了一种基于通用信号延迟叠加算子(generalized delayed signal superposition operator,GDSS)的单相锁相环结构,用于恶劣电网下系统基波以及多重谐波信息的检测。这种锁相环结构包含了多个具有很强频率选择特性的GDSS算子,能够在半个基波周期内从输入信号中分离出所需要的基波以及多个谐波频率信息,并且其参数以及GDSS算子个数还能够根据实际控制系统需求灵活调整。在各种工况下的仿真及实验表明,所提的锁相方法能够在恶劣电网下快速准确的获取基波及多重谐波信息,并且面对电网常见扰动时具有很强的鲁棒性。