Objective: The clinical clerkship and practice stage plays a pivotal role in the transition of medical students from theoretical knowledge to practical application, bridging the gap between classroom learning and real...Objective: The clinical clerkship and practice stage plays a pivotal role in the transition of medical students from theoretical knowledge to practical application, bridging the gap between classroom learning and real-life clinical experience. In order to improve the teaching quality of interns and probationers, we try to let them practice the skills of laparoscopic surgery in the early stage, and summed up a set of evaluation methods that can be widely used in medical education. Methods: From September 2019 to December 2019, a total of 54 interns and 72 trainees were selected as research objects. They were assigned to training sessions and their proficiency was assessed before and after the training. The change in proficiency is compared to determine whether the training course is valuable. Results: Before the operation training, the interns scores were BP 17.3 3.1, CC 17.9 3.4, KT 16.4 3.4, LS 16.7 3.3. The results of probationers were BP 16.9 2.7, CC 16.8 2.8, KT 15.2 1.6, and LS 14.8 2.2. After completing the operations training, the results of interns were BP 21.1 1.9, CC 20.6 2.7, KT 19.6 3.0, and LS 20.9 1.4. The probationers scores were BP 19.3 3.2, CC 19.6 3.5, KT 19.6 2.6, and LS 20.0 2.4. After the operation training, the performance of the intern group was better than that before the training (P < 0.05). The same is true of the probationer group. The time-consuming intern examinations were BP 147.9 38.5 s, CC 123.2 28.7 s, KT 82.6 24.1 s and LS 162.5 31.1 s. The examination time of probationers were BP 179.9 46.4 s, CC 132.1 24.3 s, KT 109.3 27.5 s and LS 210.0 58.8 s. Conclusion: Simulation training for laparoscopic surgery can improve minimally invasive surgical techniques for interns and probationers.展开更多
The growth of data and Internet of Things challenges traditional hardware,which encounters efficiency and power issues owing to separate functional units for sensors,memory,and computation.In this study,we designed an...The growth of data and Internet of Things challenges traditional hardware,which encounters efficiency and power issues owing to separate functional units for sensors,memory,and computation.In this study,we designed an a-phase indium selenide(a-In_(2)Se_(3))transistor,which is a two-dimensional ferroelectric semiconductor as the channel material,to create artificial optic-neural and electro-neural synapses,enabling cutting-edge processing-in-sensor(PIS)and computing-in-memory(CIM)functionalities.As an optic-neural synapse for low-level sensory processing,the a-In_(2)Se_(3)transistor exhibits a high photoresponsivity(2855 A/W)and detectivity(2.91×10^(14)Jones),facilitating efficient feature extraction.For high-level processing tasks as an electro-neural synapse,it offers a fast program/erase speed of 40 ns/50μs and ultralow energy consumption of 0.37 aJ/spike.An AI vision system using a-In_(2)Se_(3)transistors has been demonstrated.It achieved an impressive recognition accuracy of 92.63%within 12 epochs owing to the synergistic combination of the PIS and CIM functionalities.This study demonstrates the potential of the a-In_(2)Se_(3)transistor in future vision hardware,enhancing processing,power efficiency,and AI applications.展开更多
Large-bandwidth,high-sensitivity,and large dynamic range electric field sensors are gradually replacing their traditional counterparts.The lithium-niobate-on-insulator(LNOI)material has emerged as an ideal platform fo...Large-bandwidth,high-sensitivity,and large dynamic range electric field sensors are gradually replacing their traditional counterparts.The lithium-niobate-on-insulator(LNOI)material has emerged as an ideal platform for developing such devices,owing to its low optical loss,high electro-optical modulation efficiency,and significant bandwidth potential.In this paper,we propose and demonstrate an electric field sensor based on LNOI.The sensor consists of an asymmetric Mach–Zehnder interferometer(MZI)and a tapered dipole antenna array.The measured fiber-to-fiber loss is less than−6.7 dB,while the MZI structure exhibits an extinction ratio of greater than 20 dB.Moreover,64-QAM signals at 2 GHz were measured,showing an error vector magnitude(EVM)of less than 8%.展开更多
The Tibetan Plateau, also known as the Water Tower of Asia, is home to 1424 lakes with areas of greater than 1 km2, and supplies freshwater resources for more than 1.4 billion people [1,2]. In the context of recent gl...The Tibetan Plateau, also known as the Water Tower of Asia, is home to 1424 lakes with areas of greater than 1 km2, and supplies freshwater resources for more than 1.4 billion people [1,2]. In the context of recent global change, the warmer climate has caused prominent changes in the characteristics of the lake evolution on the Tibetan Plateau, such as changes in the hydrology.展开更多
目的:初步探究视网膜非压迫变白(white without pressure,WWOP)在健康青少年人群中的分布规律,为空军招飞和健康体检提供理论支持。方法:选取参加2018年空军招收飞行学员医学选拔的高中毕业学员461名和青少年航校入校选拔的初中毕业学...目的:初步探究视网膜非压迫变白(white without pressure,WWOP)在健康青少年人群中的分布规律,为空军招飞和健康体检提供理论支持。方法:选取参加2018年空军招收飞行学员医学选拔的高中毕业学员461名和青少年航校入校选拔的初中毕业学员71名作为研究对象。利用超广角激光眼底扫描系统配合直接眼底镜及三面镜检查,对WWOP等眼底病变进行筛查。结果:本研究纳入的健康青少年人群中WWOP检出率高达2. 63%,初中毕业和高中毕业学员WWOP检出率差异无统计学意义(P>0. 05)。本研究检出的WWOP病变以颞侧象限为主,尤其以颞下象限多见。高中毕业学员存在WWOP的眼合并其它周边部视网膜变性的比例高达18. 18%,较无WWOP眼显著增高。结论:WWOP在健康青少年人群中并不罕见,病变以颞侧多见,病变区域内合并其它视网膜变性的比例显著增高,体检过程中发现WWOP体征时需对周边视网膜进行仔细检查,避免漏诊、误诊。展开更多
Quasi-coherent micro-instabilities is one of the key topics of magnetic confinement fusion. This work focuses on the quasi-coherent spectra of ion temperature gradient(ITG) and trapped-electron-mode instabilities usin...Quasi-coherent micro-instabilities is one of the key topics of magnetic confinement fusion. This work focuses on the quasi-coherent spectra of ion temperature gradient(ITG) and trapped-electron-mode instabilities using newly developed far-forward collective scattering measurements within ohmic plasmas in the J-TEXT tokamak.The ITG mode is characterized by frequencies ranging from 30 to 100 k Hz and wavenumbers(k_(θρs)) less than 0.3. Beyond a critical plasma density threshold, the ITG mode undergoes a bifurcation, which is marked by a reduction in frequency and an enhancement in amplitude. Concurrently, enhancements in ion energy loss and degradation in confinement are observed. This ground-breaking discovery represents the first instance of direct experimental evidence that establishes a clear link between ITG instability and ion thermal transport.展开更多
文摘Objective: The clinical clerkship and practice stage plays a pivotal role in the transition of medical students from theoretical knowledge to practical application, bridging the gap between classroom learning and real-life clinical experience. In order to improve the teaching quality of interns and probationers, we try to let them practice the skills of laparoscopic surgery in the early stage, and summed up a set of evaluation methods that can be widely used in medical education. Methods: From September 2019 to December 2019, a total of 54 interns and 72 trainees were selected as research objects. They were assigned to training sessions and their proficiency was assessed before and after the training. The change in proficiency is compared to determine whether the training course is valuable. Results: Before the operation training, the interns scores were BP 17.3 3.1, CC 17.9 3.4, KT 16.4 3.4, LS 16.7 3.3. The results of probationers were BP 16.9 2.7, CC 16.8 2.8, KT 15.2 1.6, and LS 14.8 2.2. After completing the operations training, the results of interns were BP 21.1 1.9, CC 20.6 2.7, KT 19.6 3.0, and LS 20.9 1.4. The probationers scores were BP 19.3 3.2, CC 19.6 3.5, KT 19.6 2.6, and LS 20.0 2.4. After the operation training, the performance of the intern group was better than that before the training (P < 0.05). The same is true of the probationer group. The time-consuming intern examinations were BP 147.9 38.5 s, CC 123.2 28.7 s, KT 82.6 24.1 s and LS 162.5 31.1 s. The examination time of probationers were BP 179.9 46.4 s, CC 132.1 24.3 s, KT 109.3 27.5 s and LS 210.0 58.8 s. Conclusion: Simulation training for laparoscopic surgery can improve minimally invasive surgical techniques for interns and probationers.
基金supported by the National Natural Science Foundation of China(62104066,52221001,62090035,U19A2090,U22A20138,52372146,and 62101181)the National Key R&D Program of China(2022YFA1402501,2022YFA1204300)+6 种基金the Natural Science Foundation of Hunan Province(2021JJ20016)the Science and Technology Innovation Program of Hunan Province(2021RC3061)the Key Program of Science and Technology Department of Hunan Province(2019XK2001,2020XK2001)the Open Project Program of Wuhan National Laboratory for Optoelectronics(2020WNLOKF016)the Open Project Program of Key Laboratory of Nanodevices and Applications,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(22ZS01)the Project funded by China Postdoctoral Science Foundation(2023TQ0110)the Innovation Project of Optics Valley Laboratory(OVL2023ZD002).
文摘The growth of data and Internet of Things challenges traditional hardware,which encounters efficiency and power issues owing to separate functional units for sensors,memory,and computation.In this study,we designed an a-phase indium selenide(a-In_(2)Se_(3))transistor,which is a two-dimensional ferroelectric semiconductor as the channel material,to create artificial optic-neural and electro-neural synapses,enabling cutting-edge processing-in-sensor(PIS)and computing-in-memory(CIM)functionalities.As an optic-neural synapse for low-level sensory processing,the a-In_(2)Se_(3)transistor exhibits a high photoresponsivity(2855 A/W)and detectivity(2.91×10^(14)Jones),facilitating efficient feature extraction.For high-level processing tasks as an electro-neural synapse,it offers a fast program/erase speed of 40 ns/50μs and ultralow energy consumption of 0.37 aJ/spike.An AI vision system using a-In_(2)Se_(3)transistors has been demonstrated.It achieved an impressive recognition accuracy of 92.63%within 12 epochs owing to the synergistic combination of the PIS and CIM functionalities.This study demonstrates the potential of the a-In_(2)Se_(3)transistor in future vision hardware,enhancing processing,power efficiency,and AI applications.
基金supported by the National Key Research and Development Program of China(No.2021YFB2800104)the National Natural Science Foundation of China(Nos.62175079 and 62205119).
文摘Large-bandwidth,high-sensitivity,and large dynamic range electric field sensors are gradually replacing their traditional counterparts.The lithium-niobate-on-insulator(LNOI)material has emerged as an ideal platform for developing such devices,owing to its low optical loss,high electro-optical modulation efficiency,and significant bandwidth potential.In this paper,we propose and demonstrate an electric field sensor based on LNOI.The sensor consists of an asymmetric Mach–Zehnder interferometer(MZI)and a tapered dipole antenna array.The measured fiber-to-fiber loss is less than−6.7 dB,while the MZI structure exhibits an extinction ratio of greater than 20 dB.Moreover,64-QAM signals at 2 GHz were measured,showing an error vector magnitude(EVM)of less than 8%.
基金supported by the National Key Research and Development Program of China (2022YFC3201900)the National Natural Science Foundation of China (52225903,U2243209)。
文摘The Tibetan Plateau, also known as the Water Tower of Asia, is home to 1424 lakes with areas of greater than 1 km2, and supplies freshwater resources for more than 1.4 billion people [1,2]. In the context of recent global change, the warmer climate has caused prominent changes in the characteristics of the lake evolution on the Tibetan Plateau, such as changes in the hydrology.
基金supported by the National Natural Science Foundation of China(62175061,52172140,52221001,and 52072117)the Natural Science Foundation of Hunan Province(2022JJ30167)+1 种基金the Outstanding Scholarship Program of Hunan Province(2021JJ10021)China Postdoctoral Science Foundation(BX20220104,2022M720046 and 2022TQ0100)。
基金partially supported by the National Natural Science Foundation of China (Grant Nos. 0204131240 and 11575067)the Shenzhen Municipal Collaborative Innovation Technology ProgramInternational Science and Technology (S&T) Cooperation Project (Grant No. GJHZ20220913142609017)the “Fourteenth Five-Year Plan” Basic Technological Research Project (Grant No. JSZL2022XXXX001)。
文摘Quasi-coherent micro-instabilities is one of the key topics of magnetic confinement fusion. This work focuses on the quasi-coherent spectra of ion temperature gradient(ITG) and trapped-electron-mode instabilities using newly developed far-forward collective scattering measurements within ohmic plasmas in the J-TEXT tokamak.The ITG mode is characterized by frequencies ranging from 30 to 100 k Hz and wavenumbers(k_(θρs)) less than 0.3. Beyond a critical plasma density threshold, the ITG mode undergoes a bifurcation, which is marked by a reduction in frequency and an enhancement in amplitude. Concurrently, enhancements in ion energy loss and degradation in confinement are observed. This ground-breaking discovery represents the first instance of direct experimental evidence that establishes a clear link between ITG instability and ion thermal transport.