Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r...Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.展开更多
After washing and curing, P is transported from the phosphogypsum to the leachate during the phosphogypsum detoxification process, providing two ideas for phosphorus recovery from phosphogypsum leachate: 1) preparatio...After washing and curing, P is transported from the phosphogypsum to the leachate during the phosphogypsum detoxification process, providing two ideas for phosphorus recovery from phosphogypsum leachate: 1) preparation of calcium hydrogen phosphate for feed;2) preparation of calcium phosphate. A ready-to-use calcium oxide slurry was used to recover P from phosphogypsum leachate at a slurry concentration of 20% and a quantitative link between calcium to phosphorus ratio and fixation rate was fitted by mixed use batch experiments, reaction kinetics and thermodynamics, and theoretical calculations were used to demonstrate that phosphorus cannot be completely reused in the preparation of calcium hydrogen phosphate. The findings demonstrated that: a) the residual phosphorus concentration was in the range of 1300 - 1500 mg/L for the preparation of type I feed grade calcium hydrogen phosphate from phosphogypsum leachate;b) the P removal effect could reach 99.99% for the preparation of calcium phosphate from phosphogypsum using the theoretical equation: fixation rate = 87.91 - 10.96(Ca/P) + 3.22(Ca/P)<sup>2</sup> (R<sup>2</sup> = 0.9954);c) The procedure follows the suggested secondary kinetics, and according to the Freundlich isothermal model, the reaction process is under the control of the chemical reaction, with a reaction index of 0.7605. This study can be used as a theoretical guide for the recovery of P from phosphogypsum leachate, the preparation of products to bring about economic by-products, and the purification of wastewater for reuse.展开更多
Huntington’s disease(HD)is an autosomal dominantly-inherited neurodegenerative disease,which is caused by CAG trinucleotide expansion in exon 1 of the Huntingtin(HTT)gene.Although HD is a rare disease,its monogenic n...Huntington’s disease(HD)is an autosomal dominantly-inherited neurodegenerative disease,which is caused by CAG trinucleotide expansion in exon 1 of the Huntingtin(HTT)gene.Although HD is a rare disease,its monogenic nature makes it an ideal model in which to understand pathogenic mechanisms and to develop therapeutic strategies for neurodegenerative diseases.Clustered regularly-interspaced short palindromic repeats(CRISPR)is the latest technology for genome editing.Being simple to use and highly efficient,CRISPR-based genome-editing tools are rapidly gaining popularity in biomedical research and opening up new avenues for disease treatment.Here,we review the development of CRISPR-based genome-editing tools and their applications in HD research to offer a translational perspective on advancing the genome-editing technology to HD treatment.展开更多
Large intelligent surface(LIS)is considered as a new solution to enhance the performance of wireless networks[1].LIS comprises low-cost passive elements which can be well controlled.In this paper,a LIS is invoked in t...Large intelligent surface(LIS)is considered as a new solution to enhance the performance of wireless networks[1].LIS comprises low-cost passive elements which can be well controlled.In this paper,a LIS is invoked in the vehicular networks.We analyze the system performance under Weibull fading.We derive a novel exact analytical expression for outage probability in closed form.Based on the analytical result,we discuss three special scenarios including high SNR case,low SNR case,as well as weak interference case.The corresponding approximations for three cases are provided,respectively.In order to gain more insights,we obtain the diversity order of outage probability and it is proved that the outage probability at high SNR depends on the interference,threshold and fading parameters which leads to 0 diversity order.Furthermore,we investigate the ergodic achievable rate of LIS-assisted vehicular networks and present the closed-form tight bounds.Similar to the outage performance,three special cases are studied and the asymptotic expressions are provided in simple forms.A rate ceiling is shown for high SNRs due to the existence of interference which results 0 high SNR slope.Finally,we give the energy efficiency of LIS-assisted vehicular network.Numerical results are presented to verify the accuracy of our analysis.It is evident that the performance of LIS-assisted vehicular networks with optimal phase shift scheme exceeds that of traditional vehicular networks and random phase Received:Aug.6,2020 Revised:Nov.17,2020 Editor:Caijun Zhong shift scheme significantly.展开更多
基金supported by the National Key R&D Program of China,No.2021YFA0805200(to SY)the National Natural Science Foundation of China,No.31970954(to SY)two grants from the Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(both to XJL)。
文摘Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.
文摘After washing and curing, P is transported from the phosphogypsum to the leachate during the phosphogypsum detoxification process, providing two ideas for phosphorus recovery from phosphogypsum leachate: 1) preparation of calcium hydrogen phosphate for feed;2) preparation of calcium phosphate. A ready-to-use calcium oxide slurry was used to recover P from phosphogypsum leachate at a slurry concentration of 20% and a quantitative link between calcium to phosphorus ratio and fixation rate was fitted by mixed use batch experiments, reaction kinetics and thermodynamics, and theoretical calculations were used to demonstrate that phosphorus cannot be completely reused in the preparation of calcium hydrogen phosphate. The findings demonstrated that: a) the residual phosphorus concentration was in the range of 1300 - 1500 mg/L for the preparation of type I feed grade calcium hydrogen phosphate from phosphogypsum leachate;b) the P removal effect could reach 99.99% for the preparation of calcium phosphate from phosphogypsum using the theoretical equation: fixation rate = 87.91 - 10.96(Ca/P) + 3.22(Ca/P)<sup>2</sup> (R<sup>2</sup> = 0.9954);c) The procedure follows the suggested secondary kinetics, and according to the Freundlich isothermal model, the reaction process is under the control of the chemical reaction, with a reaction index of 0.7605. This study can be used as a theoretical guide for the recovery of P from phosphogypsum leachate, the preparation of products to bring about economic by-products, and the purification of wastewater for reuse.
基金the National Key R&D Program of China(2021YFA0805200)the National Natural Science Foundation of China(31970954,81901289 and 31872779)the Guangdong Key Laboratory of Non-human Primate Research(2020B121201006).
文摘Huntington’s disease(HD)is an autosomal dominantly-inherited neurodegenerative disease,which is caused by CAG trinucleotide expansion in exon 1 of the Huntingtin(HTT)gene.Although HD is a rare disease,its monogenic nature makes it an ideal model in which to understand pathogenic mechanisms and to develop therapeutic strategies for neurodegenerative diseases.Clustered regularly-interspaced short palindromic repeats(CRISPR)is the latest technology for genome editing.Being simple to use and highly efficient,CRISPR-based genome-editing tools are rapidly gaining popularity in biomedical research and opening up new avenues for disease treatment.Here,we review the development of CRISPR-based genome-editing tools and their applications in HD research to offer a translational perspective on advancing the genome-editing technology to HD treatment.
基金supported by the National Natural Science Foundation of China(No.61701201,61771252,61801244,61801238)the National Key Research and Development Program(No.2020YFB1806608,2019YFB2103004)+1 种基金Six Talent Peaks Project in Jiangsu ProvinceProject of Key Laboratory of Wireless Communications of Jiangsu Province.
文摘Large intelligent surface(LIS)is considered as a new solution to enhance the performance of wireless networks[1].LIS comprises low-cost passive elements which can be well controlled.In this paper,a LIS is invoked in the vehicular networks.We analyze the system performance under Weibull fading.We derive a novel exact analytical expression for outage probability in closed form.Based on the analytical result,we discuss three special scenarios including high SNR case,low SNR case,as well as weak interference case.The corresponding approximations for three cases are provided,respectively.In order to gain more insights,we obtain the diversity order of outage probability and it is proved that the outage probability at high SNR depends on the interference,threshold and fading parameters which leads to 0 diversity order.Furthermore,we investigate the ergodic achievable rate of LIS-assisted vehicular networks and present the closed-form tight bounds.Similar to the outage performance,three special cases are studied and the asymptotic expressions are provided in simple forms.A rate ceiling is shown for high SNRs due to the existence of interference which results 0 high SNR slope.Finally,we give the energy efficiency of LIS-assisted vehicular network.Numerical results are presented to verify the accuracy of our analysis.It is evident that the performance of LIS-assisted vehicular networks with optimal phase shift scheme exceeds that of traditional vehicular networks and random phase Received:Aug.6,2020 Revised:Nov.17,2020 Editor:Caijun Zhong shift scheme significantly.