The Brillouin characteristics of step-index Ge–As–Se–Te(GAST)fibers at 2μm are designed and simulated on the basis of optical and acoustic properties.The refractive indexes of Ge_(20)As_(20)Se_(45)Te_(15)glass and...The Brillouin characteristics of step-index Ge–As–Se–Te(GAST)fibers at 2μm are designed and simulated on the basis of optical and acoustic properties.The refractive indexes of Ge_(20)As_(20)Se_(45)Te_(15)glass and Ge_(20)As_(20)Se_(43)Te_(17)glass serving as fiber core and cladding are 3.20 and 3.18 at 2μm,and their acoustic velocities are 2200 m/s and 2300 m/s,respectively.Numerical results indicate that the stimulated Brillouin scattering(SBS)efficiency is 248 m^(-1)·W^(-1),and the Brillouin threshold power is 66 m W when the core diameter of the 2-m-long GAST fiber is 4μm at 2-μm wavelength.The optic–acoustic coupling factor,the Brillouin frequency shift,and the Brillouin gain coefficient are 0.98,7.02 GHz,and 3.81×10^(-9)m/W,respectively.The SBS effect of GAST fibers simulated for the first time provides a new promising approach to selecting gain medium based on 2-μm-wavelength fiber laser.展开更多
基金the National Natural Science Foundation of China(Grant Nos.61875094 and 62090064)the China Postdoctoral Science Foundation(Grant No.2018M642386)the K.C.Wong Magna Fund in Ningbo University。
文摘The Brillouin characteristics of step-index Ge–As–Se–Te(GAST)fibers at 2μm are designed and simulated on the basis of optical and acoustic properties.The refractive indexes of Ge_(20)As_(20)Se_(45)Te_(15)glass and Ge_(20)As_(20)Se_(43)Te_(17)glass serving as fiber core and cladding are 3.20 and 3.18 at 2μm,and their acoustic velocities are 2200 m/s and 2300 m/s,respectively.Numerical results indicate that the stimulated Brillouin scattering(SBS)efficiency is 248 m^(-1)·W^(-1),and the Brillouin threshold power is 66 m W when the core diameter of the 2-m-long GAST fiber is 4μm at 2-μm wavelength.The optic–acoustic coupling factor,the Brillouin frequency shift,and the Brillouin gain coefficient are 0.98,7.02 GHz,and 3.81×10^(-9)m/W,respectively.The SBS effect of GAST fibers simulated for the first time provides a new promising approach to selecting gain medium based on 2-μm-wavelength fiber laser.