Mapping and isolation of quantitative trait loci(QTLs)or genes controlling grain size or weight is very important to uncover the molecular mechanisms of seed development and crop breeding.To identify the QTLs controll...Mapping and isolation of quantitative trait loci(QTLs)or genes controlling grain size or weight is very important to uncover the molecular mechanisms of seed development and crop breeding.To identify the QTLs controlling grain size and weight,we developed a near isogenic line F_2(NIL-F_2)population,which was derived from a residual heterozygous plant in an F_7 generation of recombinant inbred line(RIL).With the completion of more than 30×whole genome re-sequencing of the parents,two DNA bulks for large and small grains,a total of 58.94 Gb clean nucleotide data were generated.A total of455 262 single nucleotide polymorphisms(SNPs)between the parents were identified to perform bulked QTL-seq.A candidate genomic region containing SNPs strongly associated with grain length and weight was identified from 15 to 20 Mb on chromosome 5.We designated the major QTL in the candidate region as q TGW5.3.Then,q TGW5.3 was further validated with PCR-based conventional QTL mapping method through developing simple sequence repeat and Insertion/Deletion markers in the F_2 population.Furthermore,recombinants and the progeny tests delimited the candidate region of q TGW5.3 to 1.13 Mb,flanked by HX5009(15.15 Mb)and HX5003(16.28 Mb).A set of NILs,selected from the F_2 population,was developed to evaluate the genetic effect of q TGW5.3.Significant QTL effects were detected on grain length,grain width and 1000-grain weight of H12-29 allele with 1.14 mm,-0.11 mm and 3.11 g,which explained 99.64%,95.51%and 97.32%of the phenotypic variations,respectively.展开更多
基金supported by National Natural Science Foundation of China(Grant No.31371605)Chinese High-Yielding Transgenic Program(Grant No.2016ZX08001-004)
文摘Mapping and isolation of quantitative trait loci(QTLs)or genes controlling grain size or weight is very important to uncover the molecular mechanisms of seed development and crop breeding.To identify the QTLs controlling grain size and weight,we developed a near isogenic line F_2(NIL-F_2)population,which was derived from a residual heterozygous plant in an F_7 generation of recombinant inbred line(RIL).With the completion of more than 30×whole genome re-sequencing of the parents,two DNA bulks for large and small grains,a total of 58.94 Gb clean nucleotide data were generated.A total of455 262 single nucleotide polymorphisms(SNPs)between the parents were identified to perform bulked QTL-seq.A candidate genomic region containing SNPs strongly associated with grain length and weight was identified from 15 to 20 Mb on chromosome 5.We designated the major QTL in the candidate region as q TGW5.3.Then,q TGW5.3 was further validated with PCR-based conventional QTL mapping method through developing simple sequence repeat and Insertion/Deletion markers in the F_2 population.Furthermore,recombinants and the progeny tests delimited the candidate region of q TGW5.3 to 1.13 Mb,flanked by HX5009(15.15 Mb)and HX5003(16.28 Mb).A set of NILs,selected from the F_2 population,was developed to evaluate the genetic effect of q TGW5.3.Significant QTL effects were detected on grain length,grain width and 1000-grain weight of H12-29 allele with 1.14 mm,-0.11 mm and 3.11 g,which explained 99.64%,95.51%and 97.32%of the phenotypic variations,respectively.
基金supported by National Basic Research Program of China(973 Program)(2012CB720000)National Natural Science Foundation of China(61104187)Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province(BS2012NY003)