期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Design of a high sensitivity and wide range angular rate sensor based on exceptional surface
1
作者 丁鑫圣 刘文耀 +7 位作者 王师贤 陶煜 周彦汝 白禹 刘来 邢恩博 唐军 刘俊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期277-286,共10页
It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low an... It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low angular rate.However,in fact,the exceptional point is easily disturbed by external environmental variables,which means that it depends on harsh experimental environment and strong control ability,so it is difficult to move towards practical application.Here,we propose a new angular rate sensor structure based on exceptional surface,which has the advantages of high sensitivity and high robustness.The system consists of two fiber-optic ring resonators and two optical loop mirrors,and one of the resonators contains a variable ratio coupler and a variable optical attenuator.We theoretically analyze the system response,and the effects of phase and coupling ratio on the system response.Finally,compared with the conventional resonant gyro,the sensitivity of this exceptional surface angular rate sensor can be improved by about 300 times at low speed.In addition,by changing the loss coefficient in the ring resonator,we can achieve a wide range of 600 rad/s.This scheme provides a new approach for the development of ultra-high sensitivity and wide range angular rate sensors in the future. 展开更多
关键词 exceptional surface exceptional points ring resonator angular rate sensing rotational direction recognition wide operating range
下载PDF
A novel dual-channel thermo-optic locking method for the whispering gallery mode microresonator
2
作者 范文杰 刘文耀 +6 位作者 潘梓文 王蓉 刘来 邢恩博 周彦汝 唐军 刘俊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期438-444,共7页
Mode locking can be effectively achieved by using the thermo-optic effects in the whispering gallery mode(WGM)optical microcavity,without the help of external equipment.Therefore,it has the advantages of small size,lo... Mode locking can be effectively achieved by using the thermo-optic effects in the whispering gallery mode(WGM)optical microcavity,without the help of external equipment.Therefore,it has the advantages of small size,low integration costs,and self-locking,which shows great potential for application.However,the conventional single-channel microcavity thermal-locking method that relies solely on internal thermal balance will inevitably be disturbed by the external environment.This limitation affects the locking time and stability.Therefore,in this paper,we propose a new method for closed-loop thermal locking of a dual-channel microcavity.The thermal locking of the signal laser and the thermal regulation of the control laser are carried out respectively by synchronously drawing a dual-path tapered fiber.The theoretical model of the thermal dynamics of the dual-channel microcavity system is established,and the influence of the control-laser power on the thermal locking of the signal laser is confirmed.The deviation between the locking voltage of the signal laser and the set point value is used as a closed-loop feedback parameter to achieve long-term and highly stable mode locking of the signal laser.The results show that in the 2.63 h thermal-locking test,the locking stability is an order of magnitude higher than that of the single tapered fiber.This solution addresses the issue of thermal locking being disrupted by the external environment,and offers new possibilities for important applications such as spectroscopy and micro-optical sensor devices. 展开更多
关键词 optical microcavity thermo-optic locking thermal nonlinearity effect
下载PDF
Dynamic range expansion for optical frequency shift detection based on multiple harmonics
3
作者 周彦汝 樊李凡 +4 位作者 徐凯 刘文耀 邢恩博 唐军 刘俊 《Chinese Optics Letters》 SCIE EI CAS CSCD 2024年第4期42-47,共6页
Sensors based on optical resonators often have their measurement range limited by their cavity linewidth,particularly in the measurement of time-varying signals.This paper introduces a method for optical frequency shi... Sensors based on optical resonators often have their measurement range limited by their cavity linewidth,particularly in the measurement of time-varying signals.This paper introduces a method for optical frequency shift detection using multiple harmonics to expand the dynamic range of sensors based on optical resonators.The proposed method expands the measurement range of optical frequency shift beyond the cavity linewidth while maintaining measurement accuracy.The theoretical derivation of this method is carried out based on the equation of motion for an optical resonator and the recursive relationship of the Bessel function.Experimental results show that the dynamic range is expanded to 4 times greater than the conventional first harmonic method while still maintaining accuracy.Furthermore,we present an objective analysis of the correlation between the expansion factor of the method and the linewidth and free spectrum of the optical resonator. 展开更多
关键词 optical resonator optical frequency shift multiple harmonics dynamic range expansion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部