Abiotic stresses and soil nutrient limitations are major environmental conditions that reduce plant growth,productivity and quality.Plants have evolved mechanisms to perceive these environmental challenges,transmit th...Abiotic stresses and soil nutrient limitations are major environmental conditions that reduce plant growth,productivity and quality.Plants have evolved mechanisms to perceive these environmental challenges,transmit the stress signals within cells as well as between cells and tissues,and make appropriate adjustments in their growth and development in order to survive and reproduce.In recent years,significant progress has been made on many fronts of the stress signaling research,particularly in understanding the downstream signaling events that culminate at the activation of stress-and nutrient limitation-responsive genes,cellular ion homeostasis,and growth adjustment.However,the revelation of the early events of stress signaling,particularly the identification of primary stress sensors,still lags behind.In this review,we summarize recent work on the genetic and molecular mechanisms of plant abiotic stress and nutrient limitation sensing and signaling and discuss new directions for future studies.展开更多
Temperature is a key factor governing the growth and development,distribution,and seasonal behavior of plants.The entireplant life cycle is affected by environmental temperatures.Plants grow rapidly and exhibit specif...Temperature is a key factor governing the growth and development,distribution,and seasonal behavior of plants.The entireplant life cycle is affected by environmental temperatures.Plants grow rapidly and exhibit specific changes in morphology under mild average temperature conditions,a response termed thermomorphogenesis.When exposed to chilling or moist chilling low temperatures,flowering or seed germination is accelerated in some plant species;these processes are known as vernalization and cold stratification,respectively.Interestingly,once many temperate plants are exposed to chilling temperatures for some time,they can acquire the ability to resist freezing stress,a process termed cold acclimation.In the face of global climate change,heat stress has emerged as a frequent challenge,which adversely affects plant growth and development.In this review,we summarize and discuss recent progress in dissecting them olecular mechanism sregulating plant thermomorphogenesis,vernalization,and responses to extreme temperatures.We also discuss the remaining issues that are crucial for understanding the interactions between plants and temperature.展开更多
Protein kinases are major players in various signal transduction pathways. Understanding the molecular mechanisms behind plant responses to biotic and abiotic stresses has become critical for developing and breeding c...Protein kinases are major players in various signal transduction pathways. Understanding the molecular mechanisms behind plant responses to biotic and abiotic stresses has become critical for developing and breeding climate-resilient crops. In this review,we summarize recent progress on understanding plant drought, salt, and cold stress responses, with a focus on signal perception and transduction by different protein kinases, especially sucrose nonfermenting1(SNF1)-related protein kinases(Sn RKs),mitogen-activated protein kinase(MAPK) cascades,calcium-dependent protein kinases(CDPKs/CPKs),and receptor-like kinases(RLKs). We also discuss future challenges in these research fields.展开更多
Rice(Oryza sativa L.)is one of the most important crops in the world.Since the completion of rice reference genome sequences,tremendous progress has been achieved in understanding the molecular mechanisms on various r...Rice(Oryza sativa L.)is one of the most important crops in the world.Since the completion of rice reference genome sequences,tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks.In this review,we summarize the research progress of rice biology over past decades,including omics,genome-wide association study,phytohormone action,nutrient use,biotic and abiotic responses,photoperiodic flowering,and reproductive development(fertility and sterility).For the roads ahead,cutting-edge technologies such as new genomics methods,high-throughput phenotyping platforms,precise genome-editing tools,environmental microbiome optimization,and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice,and facilitate integrations of the knowledge for agricultural applications.展开更多
In this paper,we proposed a framework for evaluating the performance of ecosystem strategies prepared for enhancing vulnerability reduction in the face of hazards due to climate change.The framework highlights the pos...In this paper,we proposed a framework for evaluating the performance of ecosystem strategies prepared for enhancing vulnerability reduction in the face of hazards due to climate change.The framework highlights the positive effects of human activities in the coupled human and natural system(CHANS) by introducing adaptive capacity as an evaluation criterion.A built-in regional vulnerability to a certain hazard was generated based upon interaction of three dimensions of vulnerability:exposure,sensitivity and adaptive capacity.We illustrated the application of this framework in the temperate farming-grazing transitional zone in the middle Inner Mongolia of the northern China,where drought hazard is the key threat to the CHANS.Specific indices were produced to translate such climate variance and social-economic differences into specific indicators.The results showed that the most exposed regions are the inner land areas,while counties located in the eastern part are potentially the most adaptive ones.Ordos City and Bayannur City are most frequently influenced by multiple climate variances,showing highest sensitivity.Analysis also indicated that differences in the ability to adapt to changes are the main causes of spatial differences.After depiction of the spatial differentiations and analysis of the reasons,climate zones were divided to depict the differences in facing to the drought threats.The climate zones were shown to be similar to vulnerability zones based on the quantitative structure of indexes drafted by a triangular map.Further analysis of the composition of the vulnerability index showed that the evaluation criteria were effective in validating the spatial differentiation but potentially ineffective because of their limited time scope.This research will be a demonstration of how to combine the three dimensions by quantitative methods and will thus provide a guide for government to vulnerability reduction management.展开更多
Recent discovery of PYR/PYL/RCAR-type abscisic acid (ABA) receptors has become one of most significant advances in plant science in the past decade. In mammals, endosomal sorting acts as an important pathway to down...Recent discovery of PYR/PYL/RCAR-type abscisic acid (ABA) receptors has become one of most significant advances in plant science in the past decade. In mammals, endosomal sorting acts as an important pathway to downregulate different types of receptors, but its role in plant hormone signaling is poorly understood. Here, we report that an ubiquitin E2-1ike protein, VPS23A, which is a key component of ESCRT-I, negatively regulates ABA signaling. VPS23A has epistatic relationship with PYR/PYL/RCAR-type ABA receptors and disruption of VPS23A enhanced the activity of key kinase OST1 in the ABA signaling pathway under ABA treatment. Moreover, VPS23A interacts with PYR1/PYLs and K63-1inked diubiquitin, and PYL4 possesses K63-1inked ubiquitinated modification in vivo. Further analysis revealed that VPS23A affects the subcellular localization of PYR 1 and the stability of PYL4. Taken together, our results suggest that VPS23A affects PYR1/ PYL4 via vacuole-mediated degradation, providing an advanced understanding of both the turnover of ABA receptors and ESCRTs in plant hormone signaling.展开更多
The change of impervious surface area(ISA) can effectively reveal the gradual process of urbanization and act as a key index for monitoring urban expansion. Experiencing rapid growth of the built environment in the 20...The change of impervious surface area(ISA) can effectively reveal the gradual process of urbanization and act as a key index for monitoring urban expansion. Experiencing rapid growth of the built environment in the 2000 s, urban expansion of Beijing has not been fully characterized through ISA. In this study, Landsat TM images of Beijing in 2001 and 2009 were obtained, and the eight-year urban expansion process in Beijing was analyzed using the ISA extracted by means of the vegetation-imperious surface-soil(V-I-S) model. From the spatial variation in ISA, the ring structure of urban expansion in Beijing was significant during the study period, with decreasing urban density from the city center to the periphery. In the ring road analysis, the most dramatic changes of ISA were found between the fifth ring and the sixth ring. This area has experienced the most new residential development, and is currently the main source of urban expansion. The typical profile lines revealed the directional characteristics of urban expansion. The east-west profile was the most urbanized axes in Beijing, while ISA change in the east-north profile was more significant than in the other five profiles. Moreover, the transition matrix of ISA levels revealed an increase in urban density in the low density built areas; the Moran′s I index showed a clear expansion of the central urban area, which spread contiguously; and the standard deviational ellipse indicated the northeast was the dominant direction of urban expansion. These findings can provide important spatial control guidelines in the next round of national economic and social development planning, overall urban and rural planning, and land use planning.展开更多
Mecobalamin, a form of vitamin B12 containing a central metal element (cobalt), is one of the most important mediators of nervous system function. In the clinic, it is often used to accelerate recovery of peripheral...Mecobalamin, a form of vitamin B12 containing a central metal element (cobalt), is one of the most important mediators of nervous system function. In the clinic, it is often used to accelerate recovery of peripheral nerves, but its molecular mechanism remains unclear. In the present study, we performed sciatic nerve crush injury in mice, followed by daily intraperitoneal administra-tion of mecobalamin (65 μg/kg or 130 μg/kg) or saline (negative control). Walking track analysis, histomorphological examination, and quantitative real-time PCR showed that mecobalamin signiifcantly improved functional recovery of the sciatic nerve, thickened the myelin sheath in myelinated nerve ifbers, and increased the cross-sectional area of target muscle cells. Further-more, mecobalamin upregulated mRNA expression of growth associated protein 43 in nerve tissue ipsilateral to the injury, and of neurotrophic factors (nerve growth factor, brain-derived nerve growth factor and ciliary neurotrophic factor) in the L4–6 dorsal root ganglia. Our ifndings indicate that the molecular mechanism underlying the therapeutic effect of mecobalamin after sciatic nerve injury involves the upregulation of multiple neurotrophic factor genes.展开更多
Battery energy storage systems(ESS) have been widely used in mobile base stations(BS) as the main backup power source. Due to the large number of base stations, massive distributed ESSs have largely stayed in idle and...Battery energy storage systems(ESS) have been widely used in mobile base stations(BS) as the main backup power source. Due to the large number of base stations, massive distributed ESSs have largely stayed in idle and very difficult to achieve high asset utilization. In recent years, the fast-paced development of digital energy storage(DES) technology has revolutionized the traditional operation and maintenance of ESSs by transforming them into digital assets, further enabling battery energy storage services, raising up a new way to achieve a much higher utilization of such kind of largely idle ESS resources. In this paper, the disruptive DES technology will be introduced and its application under the context of mobile BSs will be studied, and then a cloud-based energy storage(CES) platform is proposed based on a large scale distributed DESs to provide a new cyber-enabled energy storage service to the local utility company. A real-world case study shows the effectiveness and efficiency of the CES platform.展开更多
Cold acclimation in Arabidopsis thaliana triggers a significant transcriptional reprogramming altering the expression patterns of thousands of cold-responsive(COR) genes. Essential to this process is the C-repeat bind...Cold acclimation in Arabidopsis thaliana triggers a significant transcriptional reprogramming altering the expression patterns of thousands of cold-responsive(COR) genes. Essential to this process is the C-repeat binding factor(CBF)-dependent pathway, involving the activity of AP2/ERF(APETALA2/ethylene-responsive factor)-type CBF transcription factors required for plant cold acclimation. In this study, we performed chromatin immunoprecipitation assays followed by deep sequencing(ChIP-seq) to determine the genomewide binding sites of the CBF transcription factors. Cold-induced CBF proteins specifically bind to the conserved C-repeat(CRT)/dehydrationresponsive elements(CRT/DRE;G/ACCGAC) of their target genes. A Gene Ontology enrichment analysis showed that 1,012 genes are targeted by all three CBFs. Combined with a transcriptional analysis of the cbf1,2,3 triple mutant, we define 146 CBF regulons as direct CBF targets. In addition, the CBF-target genes are significantly enriched in functions associated with hormone, light,and circadian rhythm signaling, suggesting that the CBFs act as key integrators of endogenous and external environmental cues. Our findings not only define the genome-wide binding patterns of the CBFs during the early cold response, but also provide insights into the role of the CBFs in regulating multiple biological processes of plants.展开更多
As natural ecosystems provide the material basis and fundamental support for regional sustainable devel-opment,the sustainability of natural ecosystems is an important prerequisite and a viable approach for the achiev...As natural ecosystems provide the material basis and fundamental support for regional sustainable devel-opment,the sustainability of natural ecosystems is an important prerequisite and a viable approach for the achievement of regional sustainable development.It is also the final criteria to assess whether sustainable development paradigm is successful.Along with the increasing impacts of human activities on natural ecosystems,the evaluation of regional ecological sustainability has become one of the key issues for research on macro ecology and sustainable development.Based on different unit of indicators,this study firstly groups the evaluation frameworks of regional ecological sus-tainability into three major types:comprehensive index evaluation with dimensionless unit,monetary valuation,and biophysical quantity measurement.We then discuss and compare these types in terms of basic principles,scope of ap-plications,advantages and shortcomings.Finally,drawn on the discussion about characteristics of ecological sustain-ability,we outline the current trend and future directions of regional ecological sustainability evaluation,for instance,transition from sustainable development evaluation to sustainability science,integration of goal-oriented and problem-solving approaches,combination of spatial pattern analysis and ecological sustainability evaluation,and en-hancement of ecological sustainability evaluation at landscape scale.展开更多
Objective To investigate cardiac function and myocardial perfusion during 48 h after cardiopulmonary resuscitation (CPR), further to test myocardial stunning and seek indicators for long‐term survival after CPR. Me...Objective To investigate cardiac function and myocardial perfusion during 48 h after cardiopulmonary resuscitation (CPR), further to test myocardial stunning and seek indicators for long‐term survival after CPR. Methods After 4 min of untreated ventricular fibrillation, fifteen anesthetized pigs were studied at baseline and 2 h, 4 h, 24 h, and 48 h after restoration of spontaneous circulation (ROSC). Hemodynamic data, echocardiography and gated‐single photon emission computed tomography myocardial perfusion images were carried out. Results Mean arterial pressure (MAP), coronary perfusion pressure (CPP) and cardiac troponin I (CTNI) showed significant differences between eventual survival animals and non‐survival animals at 4 h after ROSC (109.2±10.7 mmHg vs. 94.8±12.3 mmHg, P=0.048; 100.8±6.9 mmHg vs. 84.4±12.6 mmHg, P=0.011; 1.60±0.13 ug/L vs. 1.75±0.10 ug/L, P=0.046). Mitral valve early‐to‐late diastolic peak velocity ratio, mitral valve deceleration time recovered 24 h; ejection faction and the summed rest score recovered 48 h after ROSC. Conclusion Cardiac systolic and early active relaxation dysfunctions were reversible within survival animals; cardiac stunning might be potentially adaptive and protective after CPR. The recovery of MAP, CPP, and CTNI could be the indicators for long‐term survival after CPR.展开更多
Soybean mosaic virus (SMV) causes severe yield losses and seed quality reduction in soybean (Glycine max) production worldwide. Rsc4 from cultivar Dabaima is a dominant genetic locus for SMV resistance, and its mappin...Soybean mosaic virus (SMV) causes severe yield losses and seed quality reduction in soybean (Glycine max) production worldwide. Rsc4 from cultivar Dabaima is a dominant genetic locus for SMV resistance, and its mapping interval contains three Nucleotide-binding domain Leucine-rich Repeat containing (NLR) candidates (Rsc4-1, Rsc4-2, and Rsc4-3). The NLR-type resistant proteins were considered as important intracellular pathogen sensors in the previous studies. In this research, based on transient expression assay in Nicotiana benthamiana leaves, we found that the longest transcript of Rsc4-3 is sufficient to induce resistance response to SMV;and CRISPR/Cas9-mediated Rsc4-3 knockout in resistant cultivar Dabaima compromised the resistance. These indicate that Rsc4-3 confers resistance to SMV. Interestingly, Rsc4-3 encodes a cell wall localized NLR-type resistant protein (Rsc4-3). The internal polypeptide region responsible for apoplastic targeting of Rsc4-3 and the putative palmitoylation sites on the N-terminus are essential for the resistance response. Furthermore, we showed that viral-encoded cylindrical inclusion (CI) protein partially localizes to the cell wall and can interact with Rsc4-3. Virus-driven or transient expression of CI protein of avirulent SMV strains is enough to induce resistance response in the presence of Rsc4-3, suggesting that CI is the avirulent gene for Rsc4-3 mediated resistance. Our work exhibited a case of NLR recognizing virus in the apoplast and provided a simple and effective method for identifying resistant genes against SMV infection.展开更多
Network is defined in GIS as a system composed of arcs and nodes (Cova and Goodchild, 2002). In real land- scape, network corresponds to a complex of corridors in its early definition (Forman and Godron, 1986). Al...Network is defined in GIS as a system composed of arcs and nodes (Cova and Goodchild, 2002). In real land- scape, network corresponds to a complex of corridors in its early definition (Forman and Godron, 1986). Al- though not occupying a large percentage of area, net- work plays a dominant role in landscape functions through its high connectivity and intensive flows of or- ganisms, materials, energy and information. Habitat within network is generally characterized by frequent disturbance and active dynamics (Collinge, 1996; Haddad, 1999).展开更多
Through a case study of Shenzhen City,China,this study focused on a quantitative method for analyzing the spatial processes involved in green infrastructure changes associated with rapid urbanization.Based on RS,GIS a...Through a case study of Shenzhen City,China,this study focused on a quantitative method for analyzing the spatial processes involved in green infrastructure changes associated with rapid urbanization.Based on RS,GIS and SPSS statistics software,the approach includes selection of the square analysis units and representative landscape metrics,quantification of the change types of landscape metrics in all analysis units through two indices and hierarchical cluster analysis of the above analysis units with different landscape metric change types(i.e.spatial attributes).The analyses verify that there is a significant sequence of continuous changes in green infrastructure in Shenzhen.They are the perforation,the segmentation,the fragmentation,the evanescence and the filling-in processes,which have a good spatio-temporal correspondence with urbanization and reflect the synthetic influence of urban planning,government policies and landforms.Compared with other studies on quantifying the spatial pattern,this study provides an alternative probe into linking the spatial pattern to spatial processes and the corresponding ecological processes in the future.These spatio-temporal processes offer many opportunities for identifying,protecting and restoring key elements in an urban green infrastructure network for areas in the early stages of urbanization or for non-urbanized areas.展开更多
The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is ...The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is proposed for fabrication of porous NiO_(x)films using Pluronic P123 as the structure-directing agent and acetylacetone(AcAc)as the coordination agent.The synthesized porous NiO_(x)films enhanced the hole extraction efficiency and reduced recombination defects at the NiO_(x)/perovskite interface.Consequently,without any modification,the power conversion efficiency(PCE)of the PSC with MAPbl_(3)as the absorber layer improved from 16.50%to 19.08%.Moreover,the PCE of the device composed of perovskite Cs0.05(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))_(3)improved from 17.49%to 21.42%.Furthermore,the application of the fabricated porous NiO_(x)on fluorine-doped tin oxide(FTO)substrates enabled the fabrication of large-area PSCs(1.2 cm^(2))with a PCE of 19.63%.This study provides a novel strategy for improving the contact at the NiO_(x)/perovskite interface for the fabrication of high-performance large-area perovskite solar cells.展开更多
Plants adapt to their ever-changing environment via positive and negative signals induced by environmental stimuli.Drought stress,for instance,induces accumulation of the plant hormone abscisic acid(ABA),triggering AB...Plants adapt to their ever-changing environment via positive and negative signals induced by environmental stimuli.Drought stress,for instance,induces accumulation of the plant hormone abscisic acid(ABA),triggering ABA signal transduction.However,the molecular mechanisms for switching between plant growth promotion and stress response remain poorly understood.Here we report that RAF(rapidly accelerated fibrosarcoma)-LIKE MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE 22(RAF22)in Arabidopsis tha/iana physically interacts with ABA INSENSITIVE 1(ABl1)and phosphorylates ABl1 at Ser416 residue to enhance its phosphatase activity.Interestingly,ABl1 can also enhance the activity of RAF22 through dephosphorylation,reciprocally inhibiting ABA signaling and promoting the maintenance of plant growth under normal conditions.Under drought stress,however,the ASA-activated OPEN STOMATA1(OST1)phosphorylates the Ser81 residue of RAF22 and inhibits its kinase activity,restraining its enhancement of ABl1 activity.Taken together,our study reveals that RAF22,ABl1,and OST1 form a dynamic regulatory network that plays crucial roles in optimizing plant growth and environmental adaptation under drought stress.展开更多
文摘Abiotic stresses and soil nutrient limitations are major environmental conditions that reduce plant growth,productivity and quality.Plants have evolved mechanisms to perceive these environmental challenges,transmit the stress signals within cells as well as between cells and tissues,and make appropriate adjustments in their growth and development in order to survive and reproduce.In recent years,significant progress has been made on many fronts of the stress signaling research,particularly in understanding the downstream signaling events that culminate at the activation of stress-and nutrient limitation-responsive genes,cellular ion homeostasis,and growth adjustment.However,the revelation of the early events of stress signaling,particularly the identification of primary stress sensors,still lags behind.In this review,we summarize recent work on the genetic and molecular mechanisms of plant abiotic stress and nutrient limitation sensing and signaling and discuss new directions for future studies.
基金This work was supported by grants from the Ministry of Agriculture of China for Transgenic Research(2016ZX08009003-002)the National Natural Science Foundation of China(31920103002,31921001)the Beijing Outstanding University Discipline Program.
文摘Temperature is a key factor governing the growth and development,distribution,and seasonal behavior of plants.The entireplant life cycle is affected by environmental temperatures.Plants grow rapidly and exhibit specific changes in morphology under mild average temperature conditions,a response termed thermomorphogenesis.When exposed to chilling or moist chilling low temperatures,flowering or seed germination is accelerated in some plant species;these processes are known as vernalization and cold stratification,respectively.Interestingly,once many temperate plants are exposed to chilling temperatures for some time,they can acquire the ability to resist freezing stress,a process termed cold acclimation.In the face of global climate change,heat stress has emerged as a frequent challenge,which adversely affects plant growth and development.In this review,we summarize and discuss recent progress in dissecting them olecular mechanism sregulating plant thermomorphogenesis,vernalization,and responses to extreme temperatures.We also discuss the remaining issues that are crucial for understanding the interactions between plants and temperature.
基金supported by grants from the Natural National Science Foundation of China (31730007 and 31921001)the Beijing Outstanding University Discipline Program。
文摘Protein kinases are major players in various signal transduction pathways. Understanding the molecular mechanisms behind plant responses to biotic and abiotic stresses has become critical for developing and breeding climate-resilient crops. In this review,we summarize recent progress on understanding plant drought, salt, and cold stress responses, with a focus on signal perception and transduction by different protein kinases, especially sucrose nonfermenting1(SNF1)-related protein kinases(Sn RKs),mitogen-activated protein kinase(MAPK) cascades,calcium-dependent protein kinases(CDPKs/CPKs),and receptor-like kinases(RLKs). We also discuss future challenges in these research fields.
基金supported by the National Natural Science Foundation of China(31825015,31921001,31921004,31991222,32122012,32002119,and 31788103)to X.H.,S.Y.,J.G.,Y.L.,B.W.,Z.Z.,and J.L.,respectively。
文摘Rice(Oryza sativa L.)is one of the most important crops in the world.Since the completion of rice reference genome sequences,tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks.In this review,we summarize the research progress of rice biology over past decades,including omics,genome-wide association study,phytohormone action,nutrient use,biotic and abiotic responses,photoperiodic flowering,and reproductive development(fertility and sterility).For the roads ahead,cutting-edge technologies such as new genomics methods,high-throughput phenotyping platforms,precise genome-editing tools,environmental microbiome optimization,and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice,and facilitate integrations of the knowledge for agricultural applications.
基金Under the auspices of Public Welfare Scientific Research Project of Chinese Ministry of Land and Resource (No. 200911015-2)
文摘In this paper,we proposed a framework for evaluating the performance of ecosystem strategies prepared for enhancing vulnerability reduction in the face of hazards due to climate change.The framework highlights the positive effects of human activities in the coupled human and natural system(CHANS) by introducing adaptive capacity as an evaluation criterion.A built-in regional vulnerability to a certain hazard was generated based upon interaction of three dimensions of vulnerability:exposure,sensitivity and adaptive capacity.We illustrated the application of this framework in the temperate farming-grazing transitional zone in the middle Inner Mongolia of the northern China,where drought hazard is the key threat to the CHANS.Specific indices were produced to translate such climate variance and social-economic differences into specific indicators.The results showed that the most exposed regions are the inner land areas,while counties located in the eastern part are potentially the most adaptive ones.Ordos City and Bayannur City are most frequently influenced by multiple climate variances,showing highest sensitivity.Analysis also indicated that differences in the ability to adapt to changes are the main causes of spatial differences.After depiction of the spatial differentiations and analysis of the reasons,climate zones were divided to depict the differences in facing to the drought threats.The climate zones were shown to be similar to vulnerability zones based on the quantitative structure of indexes drafted by a triangular map.Further analysis of the composition of the vulnerability index showed that the evaluation criteria were effective in validating the spatial differentiation but potentially ineffective because of their limited time scope.This research will be a demonstration of how to combine the three dimensions by quantitative methods and will thus provide a guide for government to vulnerability reduction management.
文摘Recent discovery of PYR/PYL/RCAR-type abscisic acid (ABA) receptors has become one of most significant advances in plant science in the past decade. In mammals, endosomal sorting acts as an important pathway to downregulate different types of receptors, but its role in plant hormone signaling is poorly understood. Here, we report that an ubiquitin E2-1ike protein, VPS23A, which is a key component of ESCRT-I, negatively regulates ABA signaling. VPS23A has epistatic relationship with PYR/PYL/RCAR-type ABA receptors and disruption of VPS23A enhanced the activity of key kinase OST1 in the ABA signaling pathway under ABA treatment. Moreover, VPS23A interacts with PYR1/PYLs and K63-1inked diubiquitin, and PYL4 possesses K63-1inked ubiquitinated modification in vivo. Further analysis revealed that VPS23A affects the subcellular localization of PYR 1 and the stability of PYL4. Taken together, our results suggest that VPS23A affects PYR1/ PYL4 via vacuole-mediated degradation, providing an advanced understanding of both the turnover of ABA receptors and ESCRTs in plant hormone signaling.
基金Under the auspices of Key Project of National Natural Science Foundation of China(No.41130534)
文摘The change of impervious surface area(ISA) can effectively reveal the gradual process of urbanization and act as a key index for monitoring urban expansion. Experiencing rapid growth of the built environment in the 2000 s, urban expansion of Beijing has not been fully characterized through ISA. In this study, Landsat TM images of Beijing in 2001 and 2009 were obtained, and the eight-year urban expansion process in Beijing was analyzed using the ISA extracted by means of the vegetation-imperious surface-soil(V-I-S) model. From the spatial variation in ISA, the ring structure of urban expansion in Beijing was significant during the study period, with decreasing urban density from the city center to the periphery. In the ring road analysis, the most dramatic changes of ISA were found between the fifth ring and the sixth ring. This area has experienced the most new residential development, and is currently the main source of urban expansion. The typical profile lines revealed the directional characteristics of urban expansion. The east-west profile was the most urbanized axes in Beijing, while ISA change in the east-north profile was more significant than in the other five profiles. Moreover, the transition matrix of ISA levels revealed an increase in urban density in the low density built areas; the Moran′s I index showed a clear expansion of the central urban area, which spread contiguously; and the standard deviational ellipse indicated the northeast was the dominant direction of urban expansion. These findings can provide important spatial control guidelines in the next round of national economic and social development planning, overall urban and rural planning, and land use planning.
基金supported by Nanjing Medical University Technology Development Fund of China(General Program),No.2013NJMU182
文摘Mecobalamin, a form of vitamin B12 containing a central metal element (cobalt), is one of the most important mediators of nervous system function. In the clinic, it is often used to accelerate recovery of peripheral nerves, but its molecular mechanism remains unclear. In the present study, we performed sciatic nerve crush injury in mice, followed by daily intraperitoneal administra-tion of mecobalamin (65 μg/kg or 130 μg/kg) or saline (negative control). Walking track analysis, histomorphological examination, and quantitative real-time PCR showed that mecobalamin signiifcantly improved functional recovery of the sciatic nerve, thickened the myelin sheath in myelinated nerve ifbers, and increased the cross-sectional area of target muscle cells. Further-more, mecobalamin upregulated mRNA expression of growth associated protein 43 in nerve tissue ipsilateral to the injury, and of neurotrophic factors (nerve growth factor, brain-derived nerve growth factor and ciliary neurotrophic factor) in the L4–6 dorsal root ganglia. Our ifndings indicate that the molecular mechanism underlying the therapeutic effect of mecobalamin after sciatic nerve injury involves the upregulation of multiple neurotrophic factor genes.
基金partly supported by the National Key R&D Program of China under the granted No. 2018YFC1902202.
文摘Battery energy storage systems(ESS) have been widely used in mobile base stations(BS) as the main backup power source. Due to the large number of base stations, massive distributed ESSs have largely stayed in idle and very difficult to achieve high asset utilization. In recent years, the fast-paced development of digital energy storage(DES) technology has revolutionized the traditional operation and maintenance of ESSs by transforming them into digital assets, further enabling battery energy storage services, raising up a new way to achieve a much higher utilization of such kind of largely idle ESS resources. In this paper, the disruptive DES technology will be introduced and its application under the context of mobile BSs will be studied, and then a cloud-based energy storage(CES) platform is proposed based on a large scale distributed DESs to provide a new cyber-enabled energy storage service to the local utility company. A real-world case study shows the effectiveness and efficiency of the CES platform.
基金This work was supported by the National Natural Sciences Foundation of China(31872658,32022008,31921001)。
文摘Cold acclimation in Arabidopsis thaliana triggers a significant transcriptional reprogramming altering the expression patterns of thousands of cold-responsive(COR) genes. Essential to this process is the C-repeat binding factor(CBF)-dependent pathway, involving the activity of AP2/ERF(APETALA2/ethylene-responsive factor)-type CBF transcription factors required for plant cold acclimation. In this study, we performed chromatin immunoprecipitation assays followed by deep sequencing(ChIP-seq) to determine the genomewide binding sites of the CBF transcription factors. Cold-induced CBF proteins specifically bind to the conserved C-repeat(CRT)/dehydrationresponsive elements(CRT/DRE;G/ACCGAC) of their target genes. A Gene Ontology enrichment analysis showed that 1,012 genes are targeted by all three CBFs. Combined with a transcriptional analysis of the cbf1,2,3 triple mutant, we define 146 CBF regulons as direct CBF targets. In addition, the CBF-target genes are significantly enriched in functions associated with hormone, light,and circadian rhythm signaling, suggesting that the CBFs act as key integrators of endogenous and external environmental cues. Our findings not only define the genome-wide binding patterns of the CBFs during the early cold response, but also provide insights into the role of the CBFs in regulating multiple biological processes of plants.
基金Under the auspices of National Natural Science Foundation of China (No.40635028,40801066)State Key Laboratory of Earth Surface Processes and Resource Ecology of China (No.2008-KF-04)
文摘As natural ecosystems provide the material basis and fundamental support for regional sustainable devel-opment,the sustainability of natural ecosystems is an important prerequisite and a viable approach for the achievement of regional sustainable development.It is also the final criteria to assess whether sustainable development paradigm is successful.Along with the increasing impacts of human activities on natural ecosystems,the evaluation of regional ecological sustainability has become one of the key issues for research on macro ecology and sustainable development.Based on different unit of indicators,this study firstly groups the evaluation frameworks of regional ecological sus-tainability into three major types:comprehensive index evaluation with dimensionless unit,monetary valuation,and biophysical quantity measurement.We then discuss and compare these types in terms of basic principles,scope of ap-plications,advantages and shortcomings.Finally,drawn on the discussion about characteristics of ecological sustain-ability,we outline the current trend and future directions of regional ecological sustainability evaluation,for instance,transition from sustainable development evaluation to sustainability science,integration of goal-oriented and problem-solving approaches,combination of spatial pattern analysis and ecological sustainability evaluation,and en-hancement of ecological sustainability evaluation at landscape scale.
基金supported by the National Natural Science Foundation of China (No. 30972863)
文摘Objective To investigate cardiac function and myocardial perfusion during 48 h after cardiopulmonary resuscitation (CPR), further to test myocardial stunning and seek indicators for long‐term survival after CPR. Methods After 4 min of untreated ventricular fibrillation, fifteen anesthetized pigs were studied at baseline and 2 h, 4 h, 24 h, and 48 h after restoration of spontaneous circulation (ROSC). Hemodynamic data, echocardiography and gated‐single photon emission computed tomography myocardial perfusion images were carried out. Results Mean arterial pressure (MAP), coronary perfusion pressure (CPP) and cardiac troponin I (CTNI) showed significant differences between eventual survival animals and non‐survival animals at 4 h after ROSC (109.2±10.7 mmHg vs. 94.8±12.3 mmHg, P=0.048; 100.8±6.9 mmHg vs. 84.4±12.6 mmHg, P=0.011; 1.60±0.13 ug/L vs. 1.75±0.10 ug/L, P=0.046). Mitral valve early‐to‐late diastolic peak velocity ratio, mitral valve deceleration time recovered 24 h; ejection faction and the summed rest score recovered 48 h after ROSC. Conclusion Cardiac systolic and early active relaxation dysfunctions were reversible within survival animals; cardiac stunning might be potentially adaptive and protective after CPR. The recovery of MAP, CPP, and CTNI could be the indicators for long‐term survival after CPR.
基金This work was supported by the National Natural Science Foundation of China(31571690,31770164)the Fundamental Research Funds for the Central Universities(KYT201801)+3 种基金Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT_17R55)the National Soybean Industrial Technology System of China(CARS-004)Jiangsu Collaborative Innovation Center for Modern Crop Production(JCIC-MCP),the National Key R&D Program of China(2017YFD0101501)the Natural Science Foundation of Jiangsu Province(BK20180039).
文摘Soybean mosaic virus (SMV) causes severe yield losses and seed quality reduction in soybean (Glycine max) production worldwide. Rsc4 from cultivar Dabaima is a dominant genetic locus for SMV resistance, and its mapping interval contains three Nucleotide-binding domain Leucine-rich Repeat containing (NLR) candidates (Rsc4-1, Rsc4-2, and Rsc4-3). The NLR-type resistant proteins were considered as important intracellular pathogen sensors in the previous studies. In this research, based on transient expression assay in Nicotiana benthamiana leaves, we found that the longest transcript of Rsc4-3 is sufficient to induce resistance response to SMV;and CRISPR/Cas9-mediated Rsc4-3 knockout in resistant cultivar Dabaima compromised the resistance. These indicate that Rsc4-3 confers resistance to SMV. Interestingly, Rsc4-3 encodes a cell wall localized NLR-type resistant protein (Rsc4-3). The internal polypeptide region responsible for apoplastic targeting of Rsc4-3 and the putative palmitoylation sites on the N-terminus are essential for the resistance response. Furthermore, we showed that viral-encoded cylindrical inclusion (CI) protein partially localizes to the cell wall and can interact with Rsc4-3. Virus-driven or transient expression of CI protein of avirulent SMV strains is enough to induce resistance response in the presence of Rsc4-3, suggesting that CI is the avirulent gene for Rsc4-3 mediated resistance. Our work exhibited a case of NLR recognizing virus in the apoplast and provided a simple and effective method for identifying resistant genes against SMV infection.
文摘Network is defined in GIS as a system composed of arcs and nodes (Cova and Goodchild, 2002). In real land- scape, network corresponds to a complex of corridors in its early definition (Forman and Godron, 1986). Al- though not occupying a large percentage of area, net- work plays a dominant role in landscape functions through its high connectivity and intensive flows of or- ganisms, materials, energy and information. Habitat within network is generally characterized by frequent disturbance and active dynamics (Collinge, 1996; Haddad, 1999).
基金Under the auspices of National Natural Science Foundation of China (No. 41001112,40635028)
文摘Through a case study of Shenzhen City,China,this study focused on a quantitative method for analyzing the spatial processes involved in green infrastructure changes associated with rapid urbanization.Based on RS,GIS and SPSS statistics software,the approach includes selection of the square analysis units and representative landscape metrics,quantification of the change types of landscape metrics in all analysis units through two indices and hierarchical cluster analysis of the above analysis units with different landscape metric change types(i.e.spatial attributes).The analyses verify that there is a significant sequence of continuous changes in green infrastructure in Shenzhen.They are the perforation,the segmentation,the fragmentation,the evanescence and the filling-in processes,which have a good spatio-temporal correspondence with urbanization and reflect the synthetic influence of urban planning,government policies and landforms.Compared with other studies on quantifying the spatial pattern,this study provides an alternative probe into linking the spatial pattern to spatial processes and the corresponding ecological processes in the future.These spatio-temporal processes offer many opportunities for identifying,protecting and restoring key elements in an urban green infrastructure network for areas in the early stages of urbanization or for non-urbanized areas.
基金supported by the National Key Research and Development Program of China(grant no.2018YFA0208701)National Natural Science Foundation of China(grant no.21773308)+6 种基金Research Funds of Renmin University of China(grant nos.2017030013,201903020,and 20XNH059)Fundamental Research Funds for Central Universities(China)supported by the Solar Energy Research Institute of Singapore(SERIS)at the National University of Singapore(NUS)supported by NUS,the National Research Foundation Singapore(NRF),the Energy Market Authority of Singapore(EMA),and the Singapore Economic Development Board(EDB)the experimental support from Suzhou Fangsheng FS-300funding from Deutsche Forschungsge-meinschaft(DFG)via Germany's Excellence Strategy-EXC 2089/1-390776260(e-conversion)as well as from TUM.solar in the context of the Bavarian Collaborative Research Project Solar Technologies Go Hybrid(SoITech)the China Scholarship Council(CSC)funding
文摘The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is proposed for fabrication of porous NiO_(x)films using Pluronic P123 as the structure-directing agent and acetylacetone(AcAc)as the coordination agent.The synthesized porous NiO_(x)films enhanced the hole extraction efficiency and reduced recombination defects at the NiO_(x)/perovskite interface.Consequently,without any modification,the power conversion efficiency(PCE)of the PSC with MAPbl_(3)as the absorber layer improved from 16.50%to 19.08%.Moreover,the PCE of the device composed of perovskite Cs0.05(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))_(3)improved from 17.49%to 21.42%.Furthermore,the application of the fabricated porous NiO_(x)on fluorine-doped tin oxide(FTO)substrates enabled the fabrication of large-area PSCs(1.2 cm^(2))with a PCE of 19.63%.This study provides a novel strategy for improving the contact at the NiO_(x)/perovskite interface for the fabrication of high-performance large-area perovskite solar cells.
基金supported by grants from the National Science Foundation of China(31730007 and 31921001)。
文摘Plants adapt to their ever-changing environment via positive and negative signals induced by environmental stimuli.Drought stress,for instance,induces accumulation of the plant hormone abscisic acid(ABA),triggering ABA signal transduction.However,the molecular mechanisms for switching between plant growth promotion and stress response remain poorly understood.Here we report that RAF(rapidly accelerated fibrosarcoma)-LIKE MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE 22(RAF22)in Arabidopsis tha/iana physically interacts with ABA INSENSITIVE 1(ABl1)and phosphorylates ABl1 at Ser416 residue to enhance its phosphatase activity.Interestingly,ABl1 can also enhance the activity of RAF22 through dephosphorylation,reciprocally inhibiting ABA signaling and promoting the maintenance of plant growth under normal conditions.Under drought stress,however,the ASA-activated OPEN STOMATA1(OST1)phosphorylates the Ser81 residue of RAF22 and inhibits its kinase activity,restraining its enhancement of ABl1 activity.Taken together,our study reveals that RAF22,ABl1,and OST1 form a dynamic regulatory network that plays crucial roles in optimizing plant growth and environmental adaptation under drought stress.