文章探讨了气相分子吸收光谱法测定土壤中亚硝酸盐氮时,硫化物、甲醛、VOCs、乙草胺、丙烯酰胺、尿素等土壤中存在的物质对分析可能产生的干扰及干扰去除方法。实验结果表明,硫化物、VOCs对亚硝酸盐氮的测定结果产生正干扰。土壤提取液...文章探讨了气相分子吸收光谱法测定土壤中亚硝酸盐氮时,硫化物、甲醛、VOCs、乙草胺、丙烯酰胺、尿素等土壤中存在的物质对分析可能产生的干扰及干扰去除方法。实验结果表明,硫化物、VOCs对亚硝酸盐氮的测定结果产生正干扰。土壤提取液中加入乙酸锌+乙酸钠混合溶液并将溶液调为弱碱性(p H 10~11),可消除硫化物干扰;土壤提取液加热煮沸3~5 min,可消除VOCs的干扰。甲醛、乙草胺、丙烯酰胺、尿素基本无干扰。展开更多
The solar-blind ultraviolet(UV)wavelength is particularly interesting within the range of 200 nm–300 nm.Here,we propose a focusing metalens,focusing vortex beam(VB)metalens and metalens array that specifically work i...The solar-blind ultraviolet(UV)wavelength is particularly interesting within the range of 200 nm–300 nm.Here,we propose a focusing metalens,focusing vortex beam(VB)metalens and metalens array that specifically work in the UV band to focus a beam or VB.Firstly,a high numerical aperture(NA)focusing metalens working at a wavelength of 214.2 nm was designed,and the NA reached 0.83.The corresponding conversion efficiency of the unit structure reached as high as 94%,and the full width at half maximum was only 117.2 nm.Metalenses with large NA can act as optical tweezers and can be applied to trap ultracold atoms and molecules.Secondly,a focused VB metalens in the wavelength range of200 nm–300 nm was also designed,which can convert polarized light into a VB and focus the VB simultaneously.Finally,a metalens array was developed to focus VBs with different topological charges on the same focal plane.This series of UV metalenses could be widely used in UV microscopy,photolithography,photonics communication,etc.展开更多
文摘文章探讨了气相分子吸收光谱法测定土壤中亚硝酸盐氮时,硫化物、甲醛、VOCs、乙草胺、丙烯酰胺、尿素等土壤中存在的物质对分析可能产生的干扰及干扰去除方法。实验结果表明,硫化物、VOCs对亚硝酸盐氮的测定结果产生正干扰。土壤提取液中加入乙酸锌+乙酸钠混合溶液并将溶液调为弱碱性(p H 10~11),可消除硫化物干扰;土壤提取液加热煮沸3~5 min,可消除VOCs的干扰。甲醛、乙草胺、丙烯酰胺、尿素基本无干扰。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60907003,61805278,61875168,and 22134005)Chongqing Science Funds for Distinguished Young Scientists(Grant No.cstc2021jcyj-jqX0027)+6 种基金Innovation Research 2035 Pilot Plan of Southwest University(Grant No.SWU-XDPY22012)China Postdoctoral Science Foundation(Grant No.2018M633704)Innovation Support Program for Overseas Students in Chongqing(Grant No.cx2021008)Foundation of NUDT(Grant Nos.JC13-02-13 and ZK17-0301)Hunan Provincial Natural Science Foundation of China(Grant No.13JJ3001)Program for New Century Excellent Talents in University(Grant No.NCET-12-0142)Chongqing Talents Program for Outstanding Scientists(Grant No.cstc2021ycjh-bgzxm0178)。
文摘The solar-blind ultraviolet(UV)wavelength is particularly interesting within the range of 200 nm–300 nm.Here,we propose a focusing metalens,focusing vortex beam(VB)metalens and metalens array that specifically work in the UV band to focus a beam or VB.Firstly,a high numerical aperture(NA)focusing metalens working at a wavelength of 214.2 nm was designed,and the NA reached 0.83.The corresponding conversion efficiency of the unit structure reached as high as 94%,and the full width at half maximum was only 117.2 nm.Metalenses with large NA can act as optical tweezers and can be applied to trap ultracold atoms and molecules.Secondly,a focused VB metalens in the wavelength range of200 nm–300 nm was also designed,which can convert polarized light into a VB and focus the VB simultaneously.Finally,a metalens array was developed to focus VBs with different topological charges on the same focal plane.This series of UV metalenses could be widely used in UV microscopy,photolithography,photonics communication,etc.