Two-dimensional(2D)membrane-based ion separation technology has been increasingly explored to address the problem of lithium resource shortage,yet it remains a sound challenge to design 2D membranes of high selectivit...Two-dimensional(2D)membrane-based ion separation technology has been increasingly explored to address the problem of lithium resource shortage,yet it remains a sound challenge to design 2D membranes of high selectivity and permeability for ion separation applications.Zeolitic imidazolate framework functionalized modified layered double hydroxide(ZIF-8@MLDH)composite membranes with high lithium-ion(Li^(+)) permeability and excellent operational stability were obtained in this work by in situ depositing functional ZIF-8 nanoparticles into the nanopores acting as framework defects in MLDH membranes.The defect-rich framework amplified the permeability of Li^(+),and the site-selective growth of ZIF-8 in the framework defects bettered its selectivity.Specifically speaking,the ZIF-8@MLDH membranes featured a high permeation rate of Li^(+) up to 1.73 mol m^(−2) h^(−1) and a desirable selectiv-ity of Li^(+)/Mg^(2+) up to 31.9.Simulations supported that the simultaneously enhanced selectivity and permeability of Li+are attributed to changes in the type of mass transfer channels and the difference in the dehydration capacity of hydrated metal cations when they pass through nanochannels of ZIF-8.This study will inspire the ongoing research of high-performance 2D membranes through the engineering of defects.展开更多
OBJECTIVE:To investigate the potential mechanisms underlying the dark red tongue color formation induced by hyperglycemia.METHODS:A high-fat diet and intraperitoneal injection of streptozotocin were used to establish ...OBJECTIVE:To investigate the potential mechanisms underlying the dark red tongue color formation induced by hyperglycemia.METHODS:A high-fat diet and intraperitoneal injection of streptozotocin were used to establish a diabetes model.The color and blood flow of tongues were analyzed by the Tongue Diagnosis Analysis System and laser Doppler flowmetry,respectively.Inflammatory factors and adhesion factors were measured in the circulation and tongue tissue by an enzyme-linked immunosorbent assay.Western blotting was employed to evaluate nuclear factor-kappa B(NF-κB)p50 and inhibitor of kappa B kinase protein expression levels in the tongue.Then,the NF-κB inhibitor,pyrrolidine dithiocarbamic acid ammonium salt was utilized to repress NF-κB pathway activation to validate that the NF-κB pathway plays a key role in blood flow and dark red tongue color formation.RESULTS:The diabetic rats displayed a dark red tongue color that was accompanied by NF-κB pathway activation and decreased blood flow in the tongue.These effects could be reversed by the NF-κB inhibitor.CONCLUSIONS:Our investigation demonstrated that hyperglycemia led to dark red tongue color formation by decreasing blood flow in the tongue,which was partly due to NF-κB pathway activation.展开更多
The wettability of the membrane surface has shown obvious influent on the separation performance of the membrane.In this work,a hydrophilic PDA-[PDDA/TiO2]+Cl-membrane was prepared by a one-step codeposition of poly(d...The wettability of the membrane surface has shown obvious influent on the separation performance of the membrane.In this work,a hydrophilic PDA-[PDDA/TiO2]+Cl-membrane was prepared by a one-step codeposition of poly(diallyldimethylammonium chloride)(PDDA)polyelectrolyte solution containing positively charged TiO2@PDDA nanoparticles with the assistance of dopamine(DA).Such positively charged membrane can be transformed into a hydrophobic membrane PDA-[PDDA/TiO2]+PFO-via the counterion exchange between Cl-and PFO-(perfluorooctanoate).The transformation between hydrophilicity and hydrophobicity is reversible.For both hydrophilic and hydrophobic membranes,the nanofiltration performances were respectively investigated by the aqueous solution and ethanol solution of dyes including methyl blue(MB),Congo red(CR)and Evans blue(EB),and as well metal salt aqueous solution.The consecutive running stability and anti-fouling performance of both hydrophilic and hydrophobic membranes were explored.The results revealed that both membranes showed high nanofiltration performances for retention of dyes in(non)aqueous solution.For the hydrophilic membrane,the rejection of salts in a sequence is MgSO4>Na2SO4>MgCl2>NaCl.Moreover,both of the hydrophilic and hydrophobic membranes showed high stability and antifouling property.展开更多
基金The authors gratefully acknowledge the funding from the Natural Science Foundation of China(22125801,22178008)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(CIT&TCD201904014)+1 种基金Jiayin Yuan is grateful for financial support from Swedish Research Council Grant 2018-05351the Wallenberg Academy Fellow program(Grant KAW 2017.0166)from the Knut&Alice Wallenberg Foundation in Sweden.
文摘Two-dimensional(2D)membrane-based ion separation technology has been increasingly explored to address the problem of lithium resource shortage,yet it remains a sound challenge to design 2D membranes of high selectivity and permeability for ion separation applications.Zeolitic imidazolate framework functionalized modified layered double hydroxide(ZIF-8@MLDH)composite membranes with high lithium-ion(Li^(+)) permeability and excellent operational stability were obtained in this work by in situ depositing functional ZIF-8 nanoparticles into the nanopores acting as framework defects in MLDH membranes.The defect-rich framework amplified the permeability of Li^(+),and the site-selective growth of ZIF-8 in the framework defects bettered its selectivity.Specifically speaking,the ZIF-8@MLDH membranes featured a high permeation rate of Li^(+) up to 1.73 mol m^(−2) h^(−1) and a desirable selectiv-ity of Li^(+)/Mg^(2+) up to 31.9.Simulations supported that the simultaneously enhanced selectivity and permeability of Li+are attributed to changes in the type of mass transfer channels and the difference in the dehydration capacity of hydrated metal cations when they pass through nanochannels of ZIF-8.This study will inspire the ongoing research of high-performance 2D membranes through the engineering of defects.
基金National Natural Science Foundation of China:Exploring the Biological Basis of Tongue Color in Diabetic Rats Based on Nuclear Factor-Kappa B Pathway-Mediated Microcirculation Disorders (No.81503552)Shanghai Key Laboratory of Chinese Medicine Clinical Medicine (No.20DZ2272200)+1 种基金Key R&D Plan of the 13th Five-Year Plan of the Ministry of Science and Technology:New Traditional Chinese Medicine Intelligent Series Tongue Diagnosis Research and Development (No.2017YFC1703301)Natural Science Foundation of Xinjiang Uygur Autonomous Region:Investigating the Mechanism Which Berberine Improved Cognitive Dysfunction Based on the Phosphoinositide 3-Kinase/Protein Kinase B Pathway (No.2018D01C024)
文摘OBJECTIVE:To investigate the potential mechanisms underlying the dark red tongue color formation induced by hyperglycemia.METHODS:A high-fat diet and intraperitoneal injection of streptozotocin were used to establish a diabetes model.The color and blood flow of tongues were analyzed by the Tongue Diagnosis Analysis System and laser Doppler flowmetry,respectively.Inflammatory factors and adhesion factors were measured in the circulation and tongue tissue by an enzyme-linked immunosorbent assay.Western blotting was employed to evaluate nuclear factor-kappa B(NF-κB)p50 and inhibitor of kappa B kinase protein expression levels in the tongue.Then,the NF-κB inhibitor,pyrrolidine dithiocarbamic acid ammonium salt was utilized to repress NF-κB pathway activation to validate that the NF-κB pathway plays a key role in blood flow and dark red tongue color formation.RESULTS:The diabetic rats displayed a dark red tongue color that was accompanied by NF-κB pathway activation and decreased blood flow in the tongue.These effects could be reversed by the NF-κB inhibitor.CONCLUSIONS:Our investigation demonstrated that hyperglycemia led to dark red tongue color formation by decreasing blood flow in the tongue,which was partly due to NF-κB pathway activation.
基金financially supported by the National Natural Science Foundation of China(21476005,21878003)the National Natural Science Fund for Innovative Research Groups(51621003)。
文摘The wettability of the membrane surface has shown obvious influent on the separation performance of the membrane.In this work,a hydrophilic PDA-[PDDA/TiO2]+Cl-membrane was prepared by a one-step codeposition of poly(diallyldimethylammonium chloride)(PDDA)polyelectrolyte solution containing positively charged TiO2@PDDA nanoparticles with the assistance of dopamine(DA).Such positively charged membrane can be transformed into a hydrophobic membrane PDA-[PDDA/TiO2]+PFO-via the counterion exchange between Cl-and PFO-(perfluorooctanoate).The transformation between hydrophilicity and hydrophobicity is reversible.For both hydrophilic and hydrophobic membranes,the nanofiltration performances were respectively investigated by the aqueous solution and ethanol solution of dyes including methyl blue(MB),Congo red(CR)and Evans blue(EB),and as well metal salt aqueous solution.The consecutive running stability and anti-fouling performance of both hydrophilic and hydrophobic membranes were explored.The results revealed that both membranes showed high nanofiltration performances for retention of dyes in(non)aqueous solution.For the hydrophilic membrane,the rejection of salts in a sequence is MgSO4>Na2SO4>MgCl2>NaCl.Moreover,both of the hydrophilic and hydrophobic membranes showed high stability and antifouling property.