In the past decades, with the increasing frequency of extreme weather and climate events, the world has suffered huge losses. Based on NCEP/NCAR reanalysis data and China regional precipitation data provided by China ...In the past decades, with the increasing frequency of extreme weather and climate events, the world has suffered huge losses. Based on NCEP/NCAR reanalysis data and China regional precipitation data provided by China Meteorological Administration, the extreme precipitation events in eastern China are defined by relative threshold method, and the temporal and spatial characteristics of summer extreme precipitation in eastern China from 1961 to 2016 are analyzed by empirical orthogonal function (EOF), and the reverse distribution of extreme precipitation in the middle and lower reaches of the Yangtze River and south China by Indian Ocean warm pool is revealed influence. The results show that the total amount and frequency of extreme precipitation in summer are concentrated in the Yangtze River Basin and south China. EOF1 decomposition of extreme precipitation reflects the interannual oscillation characteristics of reverse spatial distribution in the Yangtze River Basin and south China. The time series corresponding to EOF1 has significant interannual characteristics. The Pacific-Japan (PJ) teleconnection pattern is a circulation system that significantly affects the spatial-temporal pattern of extreme precipitation in southern China. When the PJ pattern is in the positive phase, the anticyclone controls the south China region, and restrains the convective activity, which results in the decrease of extreme precipitation. The anomalous southwest wind to the south of 30<span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span></span>N and the anomalous northerly wind to the north of 30<span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span></span>N converge in the middle and lower reaches of the Yangtze River. Combining with the sufficient water vapor carried by the anomalous southwest airflow at the edge of anticyclo展开更多
At 11:00 am on August 5, 2017, Cangyuan Washan Airport experienced low cloud and low visibility weather, accompanied by aircraft turbulence, which affected the normal operation of flights, which was closely related to...At 11:00 am on August 5, 2017, Cangyuan Washan Airport experienced low cloud and low visibility weather, accompanied by aircraft turbulence, which affected the normal operation of flights, which was closely related to the meteorological conditions at that time. Using the hourly reanalysis data of the European Centre for Medium-range Weather Forecast (ECMWF) Reanalysis 5 (ERA5), including Geopotential height, temperature, precipitation, wind field, specific humidity, vorticity and other elements, with a spatial resolution of 0.25° × 0.25°, this paper focuses on the horizontal distribution and vertical configuration of various physical quantities before and after the occurrence of low cloud and low visibility weather at the airport. The results indicate that the main influencing system of this low cloud and low visibility weather is the westward tropical depression. Before the occurrence of low cloud and low visibility weather, low-level water vapor converges and is accompanied by precipitation. The temperature decreases with precipitation, the near-surface wind direction changes, and the wind speed decreases.展开更多
文摘In the past decades, with the increasing frequency of extreme weather and climate events, the world has suffered huge losses. Based on NCEP/NCAR reanalysis data and China regional precipitation data provided by China Meteorological Administration, the extreme precipitation events in eastern China are defined by relative threshold method, and the temporal and spatial characteristics of summer extreme precipitation in eastern China from 1961 to 2016 are analyzed by empirical orthogonal function (EOF), and the reverse distribution of extreme precipitation in the middle and lower reaches of the Yangtze River and south China by Indian Ocean warm pool is revealed influence. The results show that the total amount and frequency of extreme precipitation in summer are concentrated in the Yangtze River Basin and south China. EOF1 decomposition of extreme precipitation reflects the interannual oscillation characteristics of reverse spatial distribution in the Yangtze River Basin and south China. The time series corresponding to EOF1 has significant interannual characteristics. The Pacific-Japan (PJ) teleconnection pattern is a circulation system that significantly affects the spatial-temporal pattern of extreme precipitation in southern China. When the PJ pattern is in the positive phase, the anticyclone controls the south China region, and restrains the convective activity, which results in the decrease of extreme precipitation. The anomalous southwest wind to the south of 30<span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span></span>N and the anomalous northerly wind to the north of 30<span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span></span>N converge in the middle and lower reaches of the Yangtze River. Combining with the sufficient water vapor carried by the anomalous southwest airflow at the edge of anticyclo
文摘At 11:00 am on August 5, 2017, Cangyuan Washan Airport experienced low cloud and low visibility weather, accompanied by aircraft turbulence, which affected the normal operation of flights, which was closely related to the meteorological conditions at that time. Using the hourly reanalysis data of the European Centre for Medium-range Weather Forecast (ECMWF) Reanalysis 5 (ERA5), including Geopotential height, temperature, precipitation, wind field, specific humidity, vorticity and other elements, with a spatial resolution of 0.25° × 0.25°, this paper focuses on the horizontal distribution and vertical configuration of various physical quantities before and after the occurrence of low cloud and low visibility weather at the airport. The results indicate that the main influencing system of this low cloud and low visibility weather is the westward tropical depression. Before the occurrence of low cloud and low visibility weather, low-level water vapor converges and is accompanied by precipitation. The temperature decreases with precipitation, the near-surface wind direction changes, and the wind speed decreases.