Laser interferometry is an important technique for ultrasensitive detection of motion and displacement.We push the limit of laser interferometry through noise optimization and device engineering.The contribution of no...Laser interferometry is an important technique for ultrasensitive detection of motion and displacement.We push the limit of laser interferometry through noise optimization and device engineering.The contribution of noises other than shot noise is reduced from 92.6%to 62.4%,demonstrating the possibility towards shotnoise-limited measurement.Using noise thermometry,we quantify the laser heating effect and determine the range of laser power values for room-temperature measurements.With detailed analysis and optimization of signal transduction,we achieve 1.2 fm/Hz^(1/2)displacement measurement sensitivity at room temperature in twodimensional(2D)Ca Nb_(2)O_(6)nanomechanical resonators,the best value reported to date among all resonators based on 2D materials.Our work demonstrates a possible pathway towards quantum-noise-limited measurement at room temperature.展开更多
3D model retrieval virtual reality applications. In can benefit many downstream this paper, we propose a new sketch-based 3D model retrieval framework by coupling local features and manifold ranking. At technical fron...3D model retrieval virtual reality applications. In can benefit many downstream this paper, we propose a new sketch-based 3D model retrieval framework by coupling local features and manifold ranking. At technical fronts, we exploit spatial pyramids based local structures to facilitate the efficient construction of feature descriptors. Meanwhile, we propose an improved manifold ranking method, wherein all the categories between arbitrary model pairs will be taken into account. Since the smooth and detail-preserving line drawings of 3D model are important for sketch-based 3D model retrieval, the Difference of Gaussians (DOG) method is employed to extract the line drawings over the projected depth images of 3D model, and Bezier Curve is then adopted to further optimize the extracted line drawing. On that basis, we develop a 3D model retrieval engine to verify our method. We have conducted extensive experiments over various public benchmarks, and have made comprehensive comparisons with some state-of-the-art 3D retrieval methods. All the evaluation results based on the widely-used indicators prove the superiority of our method in accuracy, reliability, robustness, and versatility.展开更多
基金the National Key R&D Program of China(Grant No.2022YFB3203600)the National Natural Science Foundation of China(Grant Nos.62150052,62250073,U21A20459,62004026,61774029,62104029,and 12104086)+2 种基金the Sichuan Science and Technology Program(Grant No.2021YJ0517 and 2021JDTD0028)the Natural Science Foundation of Hunan Province(Grant No.2021JJ40780)the Science and Technology Innovation Program of Hunan Province“Hu Xiang Young Talents”(Grant No.2021RC3021)。
文摘Laser interferometry is an important technique for ultrasensitive detection of motion and displacement.We push the limit of laser interferometry through noise optimization and device engineering.The contribution of noises other than shot noise is reduced from 92.6%to 62.4%,demonstrating the possibility towards shotnoise-limited measurement.Using noise thermometry,we quantify the laser heating effect and determine the range of laser power values for room-temperature measurements.With detailed analysis and optimization of signal transduction,we achieve 1.2 fm/Hz^(1/2)displacement measurement sensitivity at room temperature in twodimensional(2D)Ca Nb_(2)O_(6)nanomechanical resonators,the best value reported to date among all resonators based on 2D materials.Our work demonstrates a possible pathway towards quantum-noise-limited measurement at room temperature.
基金The authors would like to thank Zhang Dongdong for his great help in experiments. This work was supported by the National Natural Science Foundation of China (Grant No. 61602324), the Scientific Research Project of Beijing Educational Committeen (KM201710028018), the open funding project of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University (BUAA-VR-17KF-12) and Beijing Advanced Innovation Center for Imaging Technology (BAlCIT-2016004).
文摘3D model retrieval virtual reality applications. In can benefit many downstream this paper, we propose a new sketch-based 3D model retrieval framework by coupling local features and manifold ranking. At technical fronts, we exploit spatial pyramids based local structures to facilitate the efficient construction of feature descriptors. Meanwhile, we propose an improved manifold ranking method, wherein all the categories between arbitrary model pairs will be taken into account. Since the smooth and detail-preserving line drawings of 3D model are important for sketch-based 3D model retrieval, the Difference of Gaussians (DOG) method is employed to extract the line drawings over the projected depth images of 3D model, and Bezier Curve is then adopted to further optimize the extracted line drawing. On that basis, we develop a 3D model retrieval engine to verify our method. We have conducted extensive experiments over various public benchmarks, and have made comprehensive comparisons with some state-of-the-art 3D retrieval methods. All the evaluation results based on the widely-used indicators prove the superiority of our method in accuracy, reliability, robustness, and versatility.