Reliable generation of single photons is of key importance for fundamental physical experiments and quantum protocols.The periodically poled lithium niobate[LN]waveguide has shown promise for an integrated quantum sou...Reliable generation of single photons is of key importance for fundamental physical experiments and quantum protocols.The periodically poled lithium niobate[LN]waveguide has shown promise for an integrated quantum source due to its large spectral tunability and high efficiency,benefiting from the quasi-phase-matching.Here we demonstrate photon-pair sources based on an LN waveguide periodically poled by a tightly focused femtosecond laser beam.The pair coincidence rate reaches~8000 counts per second for average pump power of 3.2 m W[peak power is 2.9 k W).Our results prove the possibility of application of the nonlinear photonics structure fabricated by femtosecond laser to the integrated quantum source.This method can be extended to three-dimensional domain structures,which provide a potential platform for steering the spatial degree of freedom of the entangled two-photon states.展开更多
基金supported financially by the National Key R&D Program of China(Nos.2019YFA0705000,2017YFA0303800,2017YFA0303700,2019YFA0308700,and 2020YFA0309500)the National Natural Science Foundation of China(Nos.12074197,12074196,11774183,and 11922406)。
文摘Reliable generation of single photons is of key importance for fundamental physical experiments and quantum protocols.The periodically poled lithium niobate[LN]waveguide has shown promise for an integrated quantum source due to its large spectral tunability and high efficiency,benefiting from the quasi-phase-matching.Here we demonstrate photon-pair sources based on an LN waveguide periodically poled by a tightly focused femtosecond laser beam.The pair coincidence rate reaches~8000 counts per second for average pump power of 3.2 m W[peak power is 2.9 k W).Our results prove the possibility of application of the nonlinear photonics structure fabricated by femtosecond laser to the integrated quantum source.This method can be extended to three-dimensional domain structures,which provide a potential platform for steering the spatial degree of freedom of the entangled two-photon states.