樱桃番茄串生长姿态多样、果实成熟度不一,采摘机器人进行“粒收”作业时,常面临果梗干涉末端执行器、成熟度判断错误等问题,导致采摘效率低下、难以有效实现分级采收。针对上述问题,该研究提出一种级联视觉检测流程,包括采收目标检测...樱桃番茄串生长姿态多样、果实成熟度不一,采摘机器人进行“粒收”作业时,常面临果梗干涉末端执行器、成熟度判断错误等问题,导致采摘效率低下、难以有效实现分级采收。针对上述问题,该研究提出一种级联视觉检测流程,包括采收目标检测、目标果实特性判别、果实与果梗位置关系判断3个关键环节。首先根据农艺要求按成熟度将番茄果实分为4个等级,引入YOLOv5目标检测模型对番茄串和番茄果实进行检测并输出成熟度等级,实现分期采收。然后对果实与果梗的相对位置进行判断,利用MobileNetv3网络模型对膨胀包围盒进行果实与果梗相对位置关系判断,实现末端执行器采摘位姿控制。日光温室实际测试结果表明,本文提出的级联检测系统平均推理用时22ms,在IOU(intersection over union)阈值为0.5的情况下,樱桃番茄串与果实的平均检测精度达到89.9%,满足采摘机器人的视觉检测精度和实时性要求,相比末端执行器以固定角度靠近待采目标的方法,本文方法采收效率提升28.7个百分点。研究结果可为各类果蔬采摘机器人研究提供参考。展开更多
文摘樱桃番茄串生长姿态多样、果实成熟度不一,采摘机器人进行“粒收”作业时,常面临果梗干涉末端执行器、成熟度判断错误等问题,导致采摘效率低下、难以有效实现分级采收。针对上述问题,该研究提出一种级联视觉检测流程,包括采收目标检测、目标果实特性判别、果实与果梗位置关系判断3个关键环节。首先根据农艺要求按成熟度将番茄果实分为4个等级,引入YOLOv5目标检测模型对番茄串和番茄果实进行检测并输出成熟度等级,实现分期采收。然后对果实与果梗的相对位置进行判断,利用MobileNetv3网络模型对膨胀包围盒进行果实与果梗相对位置关系判断,实现末端执行器采摘位姿控制。日光温室实际测试结果表明,本文提出的级联检测系统平均推理用时22ms,在IOU(intersection over union)阈值为0.5的情况下,樱桃番茄串与果实的平均检测精度达到89.9%,满足采摘机器人的视觉检测精度和实时性要求,相比末端执行器以固定角度靠近待采目标的方法,本文方法采收效率提升28.7个百分点。研究结果可为各类果蔬采摘机器人研究提供参考。