喉振传声器以其优良的抗噪声特性已在多种强噪声场景中得到应用,但其产生的语音尚存在着中频成份厚重、高频成份缺失等问题,严重影响了语音的清晰度和可懂度。为改善喉振传声器的语音质量,本文提出了一种基于长短时记忆递归神经网络(Lon...喉振传声器以其优良的抗噪声特性已在多种强噪声场景中得到应用,但其产生的语音尚存在着中频成份厚重、高频成份缺失等问题,严重影响了语音的清晰度和可懂度。为改善喉振传声器的语音质量,本文提出了一种基于长短时记忆递归神经网络(Long short term memory recurrent neuralnetworks,LSTM-RNN)的喉振传声器语音盲增强算法。与基于低维的谱包络特征估计算法不同,该算法首先利用LSTM-RNN对喉振传声器语音与空气传导语音的高维对数幅度谱之间的转换关系进行建模,能有效捕捉上下文信息实现语音幅度谱的重构,然后采用非负矩阵分解(Non-negative matrixfactorization,NMF)对估计出的语音幅度谱进行处理,有效抑制了过平滑问题,进一步提高了语音质量。仿真实验得到的LLR,LSD,PESQ性能指标表明,该算法可有效改善喉振传声器的语音质量。展开更多
为了消除电台系统中的环境噪声和信道噪声对语音通信质量的不利影响,提升电台语音通信的质量,提出了一种基于联合通道注意力与长短时记忆网络(Long Short Term Memory,LSTM)的深度可分离U形网络CLU-Net(Channel Attention and LSTM-base...为了消除电台系统中的环境噪声和信道噪声对语音通信质量的不利影响,提升电台语音通信的质量,提出了一种基于联合通道注意力与长短时记忆网络(Long Short Term Memory,LSTM)的深度可分离U形网络CLU-Net(Channel Attention and LSTM-based U-Net)。该网络采用深度可分离卷积实现低复杂度的特征提取,联合利用注意力机制和LSTM同时关注语音通道特征和长时上下文联系,在参数量较少的情况下实现对干净语音特征的关注。在公开与实测数据集上进行多组对比实验,仿真结果表明,所提方法在VoiceBank-DEMAND数据集上的PESQ和STOI等指标得分优于同类语音增强模型。实测实验结果表明,所提CLU-Net增强框架能够有效抑制环境噪声与信道噪声,在低信噪比条件下的增强性能优于其他同类型的增强网络。展开更多
目的总结采用组织工程技术促进股骨头坏死(osteonecrosis of the femoral head,ONFH)骨组织再血管化的研究进展。方法广泛查阅近年国内外相关文献,阐明股骨头血管化机制,对组织工程技术在促进ONFH骨组织再血管化中的应用进展进行总结归...目的总结采用组织工程技术促进股骨头坏死(osteonecrosis of the femoral head,ONFH)骨组织再血管化的研究进展。方法广泛查阅近年国内外相关文献,阐明股骨头血管化机制,对组织工程技术在促进ONFH骨组织再血管化中的应用进展进行总结归纳。结果重建或改善股骨头血供是治疗ONFH的关键,目前组织工程研究热点主要基于种子细胞、支架材料以及促血管生成因子三方面,联合3D打印技术和药物递送系统来促进股骨头骨组织再血管化。结论基于组织工程技术的股骨头再血管化策略,有望改善局部血供,延缓甚至逆转ONFH进展。展开更多
文摘喉振传声器以其优良的抗噪声特性已在多种强噪声场景中得到应用,但其产生的语音尚存在着中频成份厚重、高频成份缺失等问题,严重影响了语音的清晰度和可懂度。为改善喉振传声器的语音质量,本文提出了一种基于长短时记忆递归神经网络(Long short term memory recurrent neuralnetworks,LSTM-RNN)的喉振传声器语音盲增强算法。与基于低维的谱包络特征估计算法不同,该算法首先利用LSTM-RNN对喉振传声器语音与空气传导语音的高维对数幅度谱之间的转换关系进行建模,能有效捕捉上下文信息实现语音幅度谱的重构,然后采用非负矩阵分解(Non-negative matrixfactorization,NMF)对估计出的语音幅度谱进行处理,有效抑制了过平滑问题,进一步提高了语音质量。仿真实验得到的LLR,LSD,PESQ性能指标表明,该算法可有效改善喉振传声器的语音质量。
文摘为了消除电台系统中的环境噪声和信道噪声对语音通信质量的不利影响,提升电台语音通信的质量,提出了一种基于联合通道注意力与长短时记忆网络(Long Short Term Memory,LSTM)的深度可分离U形网络CLU-Net(Channel Attention and LSTM-based U-Net)。该网络采用深度可分离卷积实现低复杂度的特征提取,联合利用注意力机制和LSTM同时关注语音通道特征和长时上下文联系,在参数量较少的情况下实现对干净语音特征的关注。在公开与实测数据集上进行多组对比实验,仿真结果表明,所提方法在VoiceBank-DEMAND数据集上的PESQ和STOI等指标得分优于同类语音增强模型。实测实验结果表明,所提CLU-Net增强框架能够有效抑制环境噪声与信道噪声,在低信噪比条件下的增强性能优于其他同类型的增强网络。
文摘目的总结采用组织工程技术促进股骨头坏死(osteonecrosis of the femoral head,ONFH)骨组织再血管化的研究进展。方法广泛查阅近年国内外相关文献,阐明股骨头血管化机制,对组织工程技术在促进ONFH骨组织再血管化中的应用进展进行总结归纳。结果重建或改善股骨头血供是治疗ONFH的关键,目前组织工程研究热点主要基于种子细胞、支架材料以及促血管生成因子三方面,联合3D打印技术和药物递送系统来促进股骨头骨组织再血管化。结论基于组织工程技术的股骨头再血管化策略,有望改善局部血供,延缓甚至逆转ONFH进展。