The effects of Ni content on the microstructure and the wetting behavior of Sn-9Zn-xNi solders on Al and Cu substrates, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn-xNi/Cu s...The effects of Ni content on the microstructure and the wetting behavior of Sn-9Zn-xNi solders on Al and Cu substrates, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn-xNi/Cu solder joints, were investigated. The microstructure of Sn-gZn-xNi revealed that tiny Zn and coarsened Ni5Zn21 phases dispersed in theβ-Sn matrix. The wettability of Sn-9Zn-xNi solders on Al substrate was much better than that on Cu substrate. With increasing Ni content, the wettability on Cu substrate was slightly improved but became worse on Al substrate. In the Al/Sn-9Zn-xNi/Cu joints, an Al4.2Cu3.2Zn0.7 intermetallic compound (IMC) layer formed at the Sn-gZn-xNi/Cu interfaces, while an Al-Zn-Sn solid solution layer formed at the Sn-9Zn-xNi/Al interface. The mixed compounds of Ni3Sna and Al3Ni dispersed in the solder matrix and coarsened with increasing Ni content, thus leading to a reduction in shear strength of the Al/Sn-9Zn- xNi/Cu joints. Al particles were segregated at both interfaces in the solder joints. The corrosion potentials of Sn-9Zn-xNi solders continuously increased with increasing Ni content. The Al/Sn-9Zn-0.25Ni/Cu joint was found to have the best electrochemical corrosion resistance in 5% NaCl solution.展开更多
Rotary swaging processing on commercial as-cast pure Mg has been carried out. Bulk texture variation with the processing passes was investigated using large gauge volume by neutron diffraction, of which results showed...Rotary swaging processing on commercial as-cast pure Mg has been carried out. Bulk texture variation with the processing passes was investigated using large gauge volume by neutron diffraction, of which results showed a combination of different components such as {00.2} basal fibre and two weak {10.0} and {11.0} fibres. Asymmetric distribution of the basal fibre around swaging direction was observed and being related to the processing parameters. Texture gradient analysis by synchrotron radiation demonstrates a non-uniform deformation of the RS processed pure Mg from surface to the centre.展开更多
Electroless Ni-P-Zn alloys deposited from alkali bath were investigated in this paper. The deposition bath contained nickel sulfate, zinc chloride and hypophosp hate. The process parameters, such as temperature, pH an...Electroless Ni-P-Zn alloys deposited from alkali bath were investigated in this paper. The deposition bath contained nickel sulfate, zinc chloride and hypophosp hate. The process parameters, such as temperature, pH and zinc salt concentratio n were presented and discussed. The microstructure of the coatings was studied b y XRD and SEM. The cathode glowing discharge characters of Ni-P-Zn depositions w ere studied with luminous Neon lamps. Electrodes deposited by electroless Ni-P a lloys were apt to sputter during luminous working hours. Electroless Ni-P-Zn dep ositions improved the discharge characters of the electrodes. With the concentra tion of zinc in the deposition rising to 4wt%, electrode sputter was largely res trained. The thickness of the deposition also influenced the discharge character s of the electrode. To avoid electrode sputter, the concentration of zinc has to rise with the thickness of the depositions.展开更多
Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,na...Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses.展开更多
Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays...Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.展开更多
Using(448.1±2.9)×10^(6)ψ(3686)for the weak baryonic decayψ(3686)→Λc+∑-+c.c..The analysis procedure is optimized using a blinded method.No significant signal is observed,and the upper limit on the branch...Using(448.1±2.9)×10^(6)ψ(3686)for the weak baryonic decayψ(3686)→Λc+∑-+c.c..The analysis procedure is optimized using a blinded method.No significant signal is observed,and the upper limit on the branching fraction(B)ofψ(3686)→Λc+∑-+c.c.is set as 1.4×10^(-5)at the 90%confidence level.展开更多
We report a search for a heavier partner of the recently observed Z_(cs)(3985)^(-) state,denoted as Z_(cs)^('-),in the process e^(+)e^(−)→K^(+)D_(s)^(∗−) D^(∗0 )+ c.c.,based on e^(*)e^(-)collision data collected ...We report a search for a heavier partner of the recently observed Z_(cs)(3985)^(-) state,denoted as Z_(cs)^('-),in the process e^(+)e^(−)→K^(+)D_(s)^(∗−) D^(∗0 )+ c.c.,based on e^(*)e^(-)collision data collected at the center-of-mass energies of √s=4.661,4.682 and 4.699 GeV with the BESIII detector.The Z_(cs)^('-) is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark.A partial-reconstruction technique is used to isolate K^(+)recoil-mass spectra,which are probed for a potential contribution from Z_(cs)^('-)→D_(s)^(∗−) D^(∗0 )+ c.c.We find an excess of Z_(cs)^('-)→D_(s)^(*-)-D^(*0)(c.c.)candidates with a significance of 2.1o,after considering systematic uncertainties,at a mass of(4123.5±0.7_(sat)±4.7_(syst.))MeV/c^(2).As the data set is limited in size,the upper limits are evaluated at the 90%confidence level on the product of the Born cross sections(σ^(Borm))and the branching fraction(B)of Z_(cs)^('-)→D_(s)^(*-)-D^(*0),under different assumptions of the Z_(cs)^('-) mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies.The upper limits of σ^(Born).B are found to be at the level of O(1)pb at each energy.Larger data samples are needed to confirm the Z_(cs)^('-) state and clarify its nature in the coming years.展开更多
Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),th...Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),the process e^(+)e^(-)→pppñπ+c.c.is observed for the first time with a statistical significance of 11.5σ.The average Born cross sections in the energy ranges of(4.160,4.380)GeV,(4.400,4.600)GeV and(4.610,4.700)GeV are measured to be(21.5±5.7±1.2)fb,(46.3±10.6±2.5)fb and(59.0±9.4±3.2)fb,respectively,where the first uncertainties are statistical and the second are systematic.The line shapes of the pñ and ppπ^(-)invariant mass spectra are consistent with phase space distributions,indicating that no hexaquark or di-baryon state is observed.展开更多
Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb-1,collected by the BESⅢdetector in the energy region between 4599.53 MeV and 4698.82 MeV,we report the first obser...Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb-1,collected by the BESⅢdetector in the energy region between 4599.53 MeV and 4698.82 MeV,we report the first observations of the Cabibbo-suppressed decaysΛ_(c)^(+)→nπ^(+)π^(0),Λ_(c)^(+)→nπ^(+)π^(-)π^(+),and the Cabibbo-favored decayΛ_(c)^(+)→nK^(-)π^(+)π^(+)with statistical significances of 7.9σ,7.8σ,and>10σ,respectively.The branching fractions of these decays are measured to be B(Λ_(c)^(+)→nπ^(+)π^(0))=(0.64±0.09±0.02)%,B(Λ_(c)^(+)→nπ^(+)π^(-)π^(+))=(0.45±0.07±0.03)%,and B(Λ_(c)^(+)→nK^(-)π^(+)π^(+))=(1.90±0.08±0.09)%,where the first uncertainties are statistical and the second are systematic.We find that the branching fraction of the decayΛ_(c)^(+)→nπ^(+)π^(0)is about one order of magnitude higher than that ofΛ_(c)^(+)→nπ^(+).展开更多
In this work, the morphologies of weld of 7075-T6 aluminum alloy via friction stir welding (FSW) were analyzed by optical microscopy, the temperature field was attained by numerical simulation, and the effect of tem...In this work, the morphologies of weld of 7075-T6 aluminum alloy via friction stir welding (FSW) were analyzed by optical microscopy, the temperature field was attained by numerical simulation, and the effect of temperature on material transfer behavior in the thermal-mechanical affected zone (TMAZ) at different stages was mainly investigated. The FSW process consists of three stages. It is very interesting to find that the maximum transfer displacement of material appears at the final stage of welding process, then at the stable stage and at the initial stage, which results from the difference of peak temperatures at different stages. At any stage, the material in TMAZ near the surface of weld transfers downwards, the material in the middle of weld moves upwards and the material near the bottom of weld hardly moves. In any cross section of weld, the largest transfer displacement of material appears in the middle of weld. The increase of rotational velocity and the decrease of welding speed are both beneficial to the transfer displacement of material in the middle of weld.展开更多
Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalcul...Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalculated to be(224.0±1.3)×10^(6) and(1088.5±4.4)×10^(6),respectively;these numbers are in good agreement with the previous measurements. For the J/ψ sample taken in 2017-2019,the number of events was determined to be(8774.0±39.4)×10^(6).The total number of J/ψ events collected with the BESIII detector was determined to be(10087±44)×10^(6),where the uncertainty is dominated by systematic effects,and the statistical uncertainty is negligible.展开更多
The cross sections of e^(+)e^(-)→K^(+)K^(-)J/Ψat center-of-mass energies from 4.127 to 4.600 GeV are measured based on 15.6 fb-1data collected with the BESⅢ detector operating at the BEPCⅡ storage ring.Two resonan...The cross sections of e^(+)e^(-)→K^(+)K^(-)J/Ψat center-of-mass energies from 4.127 to 4.600 GeV are measured based on 15.6 fb-1data collected with the BESⅢ detector operating at the BEPCⅡ storage ring.Two resonant structures are observed in the line shape of the cross sections.The mass and width of the first structure are measured to be(4225.3±2.3±21.5)MeV and(72.9±6.1±30.8)MeV,respectively.They are consistent with those of the established Y(4230).The second structure is observed for the first time with a statistical significance greater than 8σ,denoted as Y(4500).Its mass and width are determined to be(4484.7±13.3±24.1)MeV and(111.1±30.1±15.2)MeV,respectively.The first presented uncertainties are statistical and the second ones are systematic.The product of the electronic partial width with the decay branching fractionΓ(Y(4230)→e^(+)e^(−))B(Y(4230)→K^(+)K^(−)J/Ψ)is reported.展开更多
The integrated luminosities of data samples collected in the BESⅢ experiment in 2016-2017 at centerof-mass energies between 4.19 and 4.28 GeV are measured with a precision better than 1% by analyzing large-angle Bhab...The integrated luminosities of data samples collected in the BESⅢ experiment in 2016-2017 at centerof-mass energies between 4.19 and 4.28 GeV are measured with a precision better than 1% by analyzing large-angle Bhabha scattering events.The integrated luminosities of old datasets collected in 2010-2014 are updated by considering corrections related to detector performance,offsetting the effect of newly discovered readout errors in the electromagnetic calorimeter,which can haphazardly occur.展开更多
From December 2019 to June 2021,the BESⅢ experiment collected approximately 5.85 fb^(−1) of data at center-of-mass energies between 4.61 and 4.95 GeV.This is the highest collision energy BEPCⅡ has reached to date.Th...From December 2019 to June 2021,the BESⅢ experiment collected approximately 5.85 fb^(−1) of data at center-of-mass energies between 4.61 and 4.95 GeV.This is the highest collision energy BEPCⅡ has reached to date.The accumulated e^(+)e^(−) annihilation data samples are useful for studying charmonium(-like)states and charmed-hadron decays.By adopting a novel method of analyzing the production of A_(c)^(+)A_(c)^(-) pairs in e^(+)e^(−) annihilation,the center-of-mass energies are measured with a precision of 0.6 MeV.Integrated luminosities are measured with a precision of better than 1% by analyzing the events of large-angle Bhabha scattering.These measurements provide important inputs to analyses based on these data samples.展开更多
The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In t...The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows.展开更多
Achieving tunable band gaps in a structure by external stimuli is of great importance in acoustic applications. This paper aims to investigate the tunability of band gaps in square-lattice-like elastic periodic struct...Achieving tunable band gaps in a structure by external stimuli is of great importance in acoustic applications. This paper aims to investigate the tunability of band gaps in square-lattice-like elastic periodic structures that are usually not featured with notable band gaps. Endowed with chirality, the periodic structures here are able to undergo imperfection-insensitive large deformation under extension or compression. The influences of geometric parameters on band gaps are discussed via the nonlinear finite element method. It is shown that the band gaps in such structures with curved beams can be very rich and, more importantly, can be efficiently and robustly tuned by applying appropriate mechanical loadings without inducing buckling. As expected, geometry plays a more significant role than material nonlinearity does in the evolution of band gaps. The dynamic tunability of band gaps through mechanical loading is further studied. Results show that closing, opening, and shifting of band gaps can be realized by exerting real-time global extension or compression on the structure. The proposed periodic structure with well-designed chiral symmetry can be useful in the design of particular acoustic devices.展开更多
A novel model was presented to predict the evolutionary development of cladding layer, and a method based on Lambert-Beer theorem and Mie's theory was adopted to treat the interaction between powder stream and las...A novel model was presented to predict the evolutionary development of cladding layer, and a method based on Lambert-Beer theorem and Mie's theory was adopted to treat the interaction between powder stream and laser beam. By using the continuum model and enthalpy-porosity method, the fluid flow and heat transfer in solid-liquid phase change system were simulated. The commercial software PHOENICS, to which several modules were appended, was used to accomplish the simulation. Numerical computation was performed for Stellite 6 cladding on steel, the obtained results are coincident with those measured in experiment basically.展开更多
The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by ...The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2%precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.展开更多
During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the ...During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the study of excited charmonium and charmoniumlike states.By analyzing the di-muon process e^(+)e^(-)→(γISR=FSR)μ^(+)μ^(-),we measure the center-of-mass energies of the data samples with a precision of 0.6 MeV.Through a run-by-run study,we find that the center-of-mass energies were stable throughout most of the data-collection period.展开更多
基金supported by the National Natural Science Foundation of China (Nos. U0734006 and 51171036)
文摘The effects of Ni content on the microstructure and the wetting behavior of Sn-9Zn-xNi solders on Al and Cu substrates, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn-xNi/Cu solder joints, were investigated. The microstructure of Sn-gZn-xNi revealed that tiny Zn and coarsened Ni5Zn21 phases dispersed in theβ-Sn matrix. The wettability of Sn-9Zn-xNi solders on Al substrate was much better than that on Cu substrate. With increasing Ni content, the wettability on Cu substrate was slightly improved but became worse on Al substrate. In the Al/Sn-9Zn-xNi/Cu joints, an Al4.2Cu3.2Zn0.7 intermetallic compound (IMC) layer formed at the Sn-gZn-xNi/Cu interfaces, while an Al-Zn-Sn solid solution layer formed at the Sn-9Zn-xNi/Al interface. The mixed compounds of Ni3Sna and Al3Ni dispersed in the solder matrix and coarsened with increasing Ni content, thus leading to a reduction in shear strength of the Al/Sn-9Zn- xNi/Cu joints. Al particles were segregated at both interfaces in the solder joints. The corrosion potentials of Sn-9Zn-xNi solders continuously increased with increasing Ni content. The Al/Sn-9Zn-0.25Ni/Cu joint was found to have the best electrochemical corrosion resistance in 5% NaCl solution.
文摘Rotary swaging processing on commercial as-cast pure Mg has been carried out. Bulk texture variation with the processing passes was investigated using large gauge volume by neutron diffraction, of which results showed a combination of different components such as {00.2} basal fibre and two weak {10.0} and {11.0} fibres. Asymmetric distribution of the basal fibre around swaging direction was observed and being related to the processing parameters. Texture gradient analysis by synchrotron radiation demonstrates a non-uniform deformation of the RS processed pure Mg from surface to the centre.
文摘Electroless Ni-P-Zn alloys deposited from alkali bath were investigated in this paper. The deposition bath contained nickel sulfate, zinc chloride and hypophosp hate. The process parameters, such as temperature, pH and zinc salt concentratio n were presented and discussed. The microstructure of the coatings was studied b y XRD and SEM. The cathode glowing discharge characters of Ni-P-Zn depositions w ere studied with luminous Neon lamps. Electrodes deposited by electroless Ni-P a lloys were apt to sputter during luminous working hours. Electroless Ni-P-Zn dep ositions improved the discharge characters of the electrodes. With the concentra tion of zinc in the deposition rising to 4wt%, electrode sputter was largely res trained. The thickness of the deposition also influenced the discharge character s of the electrode. To avoid electrode sputter, the concentration of zinc has to rise with the thickness of the depositions.
基金Supported in part by National Key Basic Research Program of China(2015CB856700)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U 1732263,U 1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSWSLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)German Research Foundation DFG under Contracts Nos.Collaborative Research Center CRC 1044,FOR 2359Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development o f Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DEFG02-05ER41374,DE-SC-0012069)。
文摘Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses.
基金Supported in part by the National Key R&D Program of China(2020YFA0406300,2020YFA0406400)the National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12105276,12122509,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832103,U1832207,U2032111)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(455635585),Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.
基金supported in part by National Key Research and Development Program of China(2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC,11975118,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265,12061131003)+18 种基金the Natural Science Foundation of Hunan Province of China(2019JJ30019)the Science and Technology Innovation Program of Hunan Province(2020RC3054)the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and Cosmology,ERC(758462)European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(443159800)Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources and Institutional Development,Research and Innovation(B16F640076)STFC(United Kingdom)Suranaree University of Technology(SUT),Thailand Science Research and Innovation(TSRI),and National Science Research and Innovation Fund(NSRF,160355)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using(448.1±2.9)×10^(6)ψ(3686)for the weak baryonic decayψ(3686)→Λc+∑-+c.c..The analysis procedure is optimized using a blinded method.No significant signal is observed,and the upper limit on the branching fraction(B)ofψ(3686)→Λc+∑-+c.c.is set as 1.4×10^(-5)at the 90%confidence level.
基金Supported in part by National Key R&D Program of China(Grant Nos.2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC)(Grant Nos.11635010,11735014,11805086,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265)+18 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(Grant No.U1832207)the CAS Center for Excellence in Particle Physics(CCEPP)100 Talents Program of CASFundamental Research Funds for the Central Universities,Lanzhou University,University of Chinese Academy of SciencesThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyERC(Grant No.758462)European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(Grant No.894790)German Research Foundation DFG(Grant No.443159800),Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(Grant No.DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(Grant No.B16F640076)Olle Engkvist Foundation(Grant No.200-0605)STFC(United Kingdom)Suranaree University of Technology(SUT),Thailand Science Research and Innovation(TSRI),and National Science Research and Innovation Fund(NSRF)(Grant No.160355)The Royal Society,UK(Grant Nos.DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(Grant No.DE-FG02-05ER41374)。
文摘We report a search for a heavier partner of the recently observed Z_(cs)(3985)^(-) state,denoted as Z_(cs)^('-),in the process e^(+)e^(−)→K^(+)D_(s)^(∗−) D^(∗0 )+ c.c.,based on e^(*)e^(-)collision data collected at the center-of-mass energies of √s=4.661,4.682 and 4.699 GeV with the BESIII detector.The Z_(cs)^('-) is of interest as it is expected to be a candidate for a hidden-charm and open-strange tetraquark.A partial-reconstruction technique is used to isolate K^(+)recoil-mass spectra,which are probed for a potential contribution from Z_(cs)^('-)→D_(s)^(∗−) D^(∗0 )+ c.c.We find an excess of Z_(cs)^('-)→D_(s)^(*-)-D^(*0)(c.c.)candidates with a significance of 2.1o,after considering systematic uncertainties,at a mass of(4123.5±0.7_(sat)±4.7_(syst.))MeV/c^(2).As the data set is limited in size,the upper limits are evaluated at the 90%confidence level on the product of the Born cross sections(σ^(Borm))and the branching fraction(B)of Z_(cs)^('-)→D_(s)^(*-)-D^(*0),under different assumptions of the Z_(cs)^('-) mass from 4.120 to 4.140 MeV and of the width from 10 to 50 MeV at the three center-of-mass energies.The upper limits of σ^(Born).B are found to be at the level of O(1)pb at each energy.Larger data samples are needed to confirm the Z_(cs)^('-) state and clarify its nature in the coming years.
基金Supported in part by National Key R&D Program of China under Contracts Nos.Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(11975118,11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12061131003,12075252,12192260,12192261,12192262,12192263,12192264,12192265)+19 种基金the Natural Science Foundation of Hunan Province of China(2019JJ30019)the Science and Technology Innovation Program of Hunan Province(2020RC3054)the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union Horizon 2020 research and innovation programme under Contract No.Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(43159800)Collaborative Research Center CRC 1044,FOR 2359,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0012069)。
文摘Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),the process e^(+)e^(-)→pppñπ+c.c.is observed for the first time with a statistical significance of 11.5σ.The average Born cross sections in the energy ranges of(4.160,4.380)GeV,(4.400,4.600)GeV and(4.610,4.700)GeV are measured to be(21.5±5.7±1.2)fb,(46.3±10.6±2.5)fb and(59.0±9.4±3.2)fb,respectively,where the first uncertainties are statistical and the second are systematic.The line shapes of the pñ and ppπ^(-)invariant mass spectra are consistent with phase space distributions,indicating that no hexaquark or di-baryon state is observed.
基金Supported in part by National Key R&D Program of China(2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC)(11635010,11735014,11805086,11835012,11935015,11935016,11935018,11975011,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265)+20 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)the CAS Center for Excellence in Particle Physics(CCEPP)100 Talents Program of CASFundamental Research Funds for the Central Universities,Lanzhou University,University of Chinese Academy of SciencesThe Institute of Nuclear and Particle Physics(INPAC)Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)German Research Foundation DFG(443159800)Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(B16F640076STFC)(United Kingdom)Suranaree University of Technology(SUT)Thailand Science Research and Innovation(TSRI)National Science Research and Innovation Fund(NSRF)(160355)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DEFG02-05ER41374)。
文摘Using electron-positron annihilation data samples corresponding to an integrated luminosity of 4.5 fb-1,collected by the BESⅢdetector in the energy region between 4599.53 MeV and 4698.82 MeV,we report the first observations of the Cabibbo-suppressed decaysΛ_(c)^(+)→nπ^(+)π^(0),Λ_(c)^(+)→nπ^(+)π^(-)π^(+),and the Cabibbo-favored decayΛ_(c)^(+)→nK^(-)π^(+)π^(+)with statistical significances of 7.9σ,7.8σ,and>10σ,respectively.The branching fractions of these decays are measured to be B(Λ_(c)^(+)→nπ^(+)π^(0))=(0.64±0.09±0.02)%,B(Λ_(c)^(+)→nπ^(+)π^(-)π^(+))=(0.45±0.07±0.03)%,and B(Λ_(c)^(+)→nK^(-)π^(+)π^(+))=(1.90±0.08±0.09)%,where the first uncertainties are statistical and the second are systematic.We find that the branching fraction of the decayΛ_(c)^(+)→nπ^(+)π^(0)is about one order of magnitude higher than that ofΛ_(c)^(+)→nπ^(+).
基金the National Natural Science Foundation of China (No.51204111)the Education Department Foundation of Liaoning Province (No.L2012047)the State Key Lab of Advanced Welding and Joining in Harbin Institute of Technology (AWJ-M13-07)
文摘In this work, the morphologies of weld of 7075-T6 aluminum alloy via friction stir welding (FSW) were analyzed by optical microscopy, the temperature field was attained by numerical simulation, and the effect of temperature on material transfer behavior in the thermal-mechanical affected zone (TMAZ) at different stages was mainly investigated. The FSW process consists of three stages. It is very interesting to find that the maximum transfer displacement of material appears at the final stage of welding process, then at the stable stage and at the initial stage, which results from the difference of peak temperatures at different stages. At any stage, the material in TMAZ near the surface of weld transfers downwards, the material in the middle of weld moves upwards and the material near the bottom of weld hardly moves. In any cross section of weld, the largest transfer displacement of material appears in the middle of weld. The increase of rotational velocity and the decrease of welding speed are both beneficial to the transfer displacement of material in the middle of weld.
基金Supported in part by National Key R&D Program of China(2020YFA0406300, 2020YFA0406400)National Natural Science Foundation of China(NSFC)(11625523, 11635010, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012, 12022510, 12025502, 12035009, 12035013,12061131003,12075252)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263, U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union Horizon 2020 research and innovation programme Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(443159800), Collaborative Research Center CRC 1044, FOR 2359, GRK 214Istituto Nazionale di Fisica Nucleare, ItalyMinistry of Development of Turkey under Contract No. DPT2006K-120470National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society, UK(DH140054, DH160214)The Swedish Research CouncilU. S. Department of Energy(DE-FG02-05ER41374, DE-SC-0012069)
文摘Using inclusive decays of J/ψ aprecise determination of the number of J/ψ events collected with the BESIII detector was performed.For the two data sets taken in 2009 and 2012,the numbers of J/ψ events were recalculated to be(224.0±1.3)×10^(6) and(1088.5±4.4)×10^(6),respectively;these numbers are in good agreement with the previous measurements. For the J/ψ sample taken in 2017-2019,the number of events was determined to be(8774.0±39.4)×10^(6).The total number of J/ψ events collected with the BESIII detector was determined to be(10087±44)×10^(6),where the uncertainty is dominated by systematic effects,and the statistical uncertainty is negligible.
基金Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)under Contracts Nos.(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12061131003)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos.(U1732263,U1832207)CAS Key Research Program of Frontier Sciences under Contract No.(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC under Contract No.(758462)European Union Horizon 2020 research and innovation programme under Contract No.Marie Sklodowska-Curie grant agreement No(894790)German Research Foundation DFG under Contracts Nos.(443159800),Collaborative Research Center CRC 1044,FOR 2359,GRK 214Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey under Contract No.(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation under Contract No.(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)under Contract No.(2016.0157)The Royal Society,UK under Contracts Nos.(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy under Contracts Nos.(DE-FG02-05ER41374,DE-SC-001206)。
文摘The cross sections of e^(+)e^(-)→K^(+)K^(-)J/Ψat center-of-mass energies from 4.127 to 4.600 GeV are measured based on 15.6 fb-1data collected with the BESⅢ detector operating at the BEPCⅡ storage ring.Two resonant structures are observed in the line shape of the cross sections.The mass and width of the first structure are measured to be(4225.3±2.3±21.5)MeV and(72.9±6.1±30.8)MeV,respectively.They are consistent with those of the established Y(4230).The second structure is observed for the first time with a statistical significance greater than 8σ,denoted as Y(4500).Its mass and width are determined to be(4484.7±13.3±24.1)MeV and(111.1±30.1±15.2)MeV,respectively.The first presented uncertainties are statistical and the second ones are systematic.The product of the electronic partial width with the decay branching fractionΓ(Y(4230)→e^(+)e^(−))B(Y(4230)→K^(+)K^(−)J/Ψ)is reported.
基金Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12061131003)+16 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union Horizon 2020 research and innovation programme(Marie Sklodowska-Curie grant agreement No 894790)German Research Foundation DFG(443159800),Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0012069)。
文摘The integrated luminosities of data samples collected in the BESⅢ experiment in 2016-2017 at centerof-mass energies between 4.19 and 4.28 GeV are measured with a precision better than 1% by analyzing large-angle Bhabha scattering events.The integrated luminosities of old datasets collected in 2010-2014 are updated by considering corrections related to detector performance,offsetting the effect of newly discovered readout errors in the electromagnetic calorimeter,which can haphazardly occur.
基金Supported in part by National Key R&D Program of China(2020YFA0406400,2020YFA0406300)National Natural Science Foundation of China(NSFC)(11635010,11735014,11805086,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12192260,12192261,12192262,12192263,12192264,12192265)+17 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASFundamental Research Funds for the Central Universities,Lanzhou University,University of Chinese Academy of SciencesThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(443159800),Collaborative Research Center CRC 1044,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(B16F640076)STFC(United Kingdom)Suranaree University of Technology(SUT),Thailand Science Research and Innovation(TSRI),and National Science Research and Innovation Fund(NSRF)(160355)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘From December 2019 to June 2021,the BESⅢ experiment collected approximately 5.85 fb^(−1) of data at center-of-mass energies between 4.61 and 4.95 GeV.This is the highest collision energy BEPCⅡ has reached to date.The accumulated e^(+)e^(−) annihilation data samples are useful for studying charmonium(-like)states and charmed-hadron decays.By adopting a novel method of analyzing the production of A_(c)^(+)A_(c)^(-) pairs in e^(+)e^(−) annihilation,the center-of-mass energies are measured with a precision of 0.6 MeV.Integrated luminosities are measured with a precision of better than 1% by analyzing the events of large-angle Bhabha scattering.These measurements provide important inputs to analyses based on these data samples.
基金Daya Bay is supported in part by the Ministry of Science and Technology o f China, the U.S. Department o f Energy, the Chinese Academy of Sciences, the CASCenter for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government,the China General Nuclear Power Group, Key Laboratory of Particle and Radiation Imaging (Tsinghua University), the Ministry of Education, Key Laboratory ofParticle Physics and Particle Irradiation (Shandong University), the Ministry o f Education, Shanghai Laboratory for Particle Physics and Cosmology, the ResearchGrants Council o f the Hong Kong Special Administrative Region of China, the University Development Fund of the University of Hong Kong, the MOE program forResearch of Excellence at National Taiwan University, National Chiao-Tung University, NSC fund support from Taiwan, the U.S. National Science Foundation, the AlfredP. Sloan Foundation, the Ministry o f Education, Youth, and Sports of the Czech Republic, the Charles University GAUK (284317), the Joint Institute o f NuclearResearch in Dubna, Russia, the National Commission of Scientific and Technological Research of Chile, and the Tsinghua University Initiative Scientific Research Program.
文摘The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows.
基金supported by the National Natural Science Foundation of China (Nos. 11532001, 11621062,and 11272281)open project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology)under Grant No. KFJJ16-04MPartial support from the Fundamental Research Funds for the Central Universities(No. 2016XZZX001-05)
文摘Achieving tunable band gaps in a structure by external stimuli is of great importance in acoustic applications. This paper aims to investigate the tunability of band gaps in square-lattice-like elastic periodic structures that are usually not featured with notable band gaps. Endowed with chirality, the periodic structures here are able to undergo imperfection-insensitive large deformation under extension or compression. The influences of geometric parameters on band gaps are discussed via the nonlinear finite element method. It is shown that the band gaps in such structures with curved beams can be very rich and, more importantly, can be efficiently and robustly tuned by applying appropriate mechanical loadings without inducing buckling. As expected, geometry plays a more significant role than material nonlinearity does in the evolution of band gaps. The dynamic tunability of band gaps through mechanical loading is further studied. Results show that closing, opening, and shifting of band gaps can be realized by exerting real-time global extension or compression on the structure. The proposed periodic structure with well-designed chiral symmetry can be useful in the design of particular acoustic devices.
基金supported by the National Natural Science Foundation of China(No.59871038)the Foundation of State Key Laboratory of Laser Technology,Huazhong University of Science and Technology
文摘A novel model was presented to predict the evolutionary development of cladding layer, and a method based on Lambert-Beer theorem and Mie's theory was adopted to treat the interaction between powder stream and laser beam. By using the continuum model and enthalpy-porosity method, the fluid flow and heat transfer in solid-liquid phase change system were simulated. The commercial software PHOENICS, to which several modules were appended, was used to accomplish the simulation. Numerical computation was performed for Stellite 6 cladding on steel, the obtained results are coincident with those measured in experiment basically.
基金Supported in part by the Ministry of Science and Technology of Chinathe U.S.Department of Energy,the Chinese Academy of Sciences,the CAS Center for Excellence in Particle Physics,the National Natural Science Foundation of China+3 种基金the Guangdong provincial governmentthe Shenzhen municipal government,the China General Nuclear Power Group,the Research Grants Council of the Hong Kong Special Administrative Region of China,the Ministry of Education in TWthe U.S.National Science Foundation,the Ministry of Education,Youth,and Sports of the Czech Republic,the Charles University Research Centre UNCE,the Joint Institute of Nuclear Research in Dubna,Russiathe National Commission of Scientific and Technological Research of Chile。
文摘The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2%precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.
基金Supported in part by National Key Research and Development Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012)+12 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CAS,INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology,ERC(758462)European Union Horizon 2020 research and innovation programme(Marie Sklodowska-Curie grant agreement No 894790)German Research Foundation DFG(443159800)Collaborative Research Center CRC 1044,FOR 2359,FOR 2359,GRK 214Istituto Nazionale di Fisica Nucleare,Italy,Ministry of Development of Turkey(DPT2006K-120470)National Science and Technology fund,Olle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research Council,U.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0012069)。
文摘During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the study of excited charmonium and charmoniumlike states.By analyzing the di-muon process e^(+)e^(-)→(γISR=FSR)μ^(+)μ^(-),we measure the center-of-mass energies of the data samples with a precision of 0.6 MeV.Through a run-by-run study,we find that the center-of-mass energies were stable throughout most of the data-collection period.