This paper presents a detailed investigation, via field experiment, into the mechanism of high-order polygonal wear of wheels of a new type of high-speed train. The investigation was carried out during the performance...This paper presents a detailed investigation, via field experiment, into the mechanism of high-order polygonal wear of wheels of a new type of high-speed train. The investigation was carried out during the performance acceptance test of the train and its initial commercial operation. The investigation covered the performance acceptance test of 150 000 km and the commercial operation of about 150 000 km. In the performance acceptance test of the first stage of about 70 000 km, at 200-250 km/h with full loading and sometimes overloading by 30%, the serious polygonal wear of 23-order took place on all the wheels of the train, and was measured and analyzed in detail. All the potygonized wheels were re-profiled because the polygonal wear had caused strong vibration and damage to the train parts. After re-profiling, the vibration of the train and track and the wear status of the wheels were measured and analyzed at different test mileages according to the polygonal wear situation of the wheels. The measured vibration of the train includes the accelerations at different positions of a motor car and a trail car. The vibration modes of the key parts of the bogies of the two cars were calculated. Meanwhile, the track resonant frequencies were investigated at the site. The purpose of the above tests and analysis is try to find the frequency of work mode matching the passing frequency of the high-order wheel polygon. The present investigation shows that one of the working models causes the formation and development of the high-order wheel polygonal wear. The growth of this wear was effectively reduced through the frequent changing of the running speed of the train operating on the way back and forth every day.展开更多
AIM: To analyze the clinical features and risk factors of adverse reactions associated with telbivudine. METHODS: Clinical data were collected from cases that presented with serious adverse reactions to telbivudine. W...AIM: To analyze the clinical features and risk factors of adverse reactions associated with telbivudine. METHODS: Clinical data were collected from cases that presented with serious adverse reactions to telbivudine. We analyzed general information and medicine status, clinical features, results of examination, and misdiagnosis. RESULTS: Out of 105 patients who were treated with telbivudine for hepatitis B in an outpatient department from January, 2007 to January, 2008, five presented with serious adverse drug reactions. Most of these five patients had used other nucleoside analogues in the past. Four were treated with a combination of telbivudine and interferon or another nucleoside analogue, while the other received an increased dose of telbivudine. The main adverse reactions were myalgia and general weakness. This was accompanied by cardiac arrhythmia in one patient, and nervous symptoms in three. Serum creatine kinase was elevated. The rate of misdiagnosis was high. CONCLUSION: The adverse reactions were related to telbivudine, but the biological mechanism of the reactions is not yet clear. Combination therapy with interferon or another nucleoside analogue and a high dose may increase the risk of adverse reactions.展开更多
A remote control system has been developed to deliver stimuli into the rat brain through a wireless micro-stimulator for animal behavior training. The system consists of the following main components: an integrated P...A remote control system has been developed to deliver stimuli into the rat brain through a wireless micro-stimulator for animal behavior training. The system consists of the following main components: an integrated PC control program, a transmitter and a receiver based on Bluetooth (BT) modules, a stimulator controlled by C8051 microprocessor, as well as an operant chamber and an eight-arm radial maze. The micro-stimulator is featured with its changeable amplitude of pulse output for both constant-voltage and constant-current mode, which provides an easy way to set the proper suitable stimulation intensity for different training. The system has been used in behavior experiments for monitoring and recording bar-pressing in the operant chamber, controlling rat roaming in the eight-arm maze, as well as navigating rats through a 3D obstacle route. The results indicated that the system worked stably and that the stimulation was effective for different types of rat behavior controls. In addition, the results showed that stimulation in the whisker barrel region of rat primary somatosensory cortex (SI) acted like a cue. The animals can be trained to take different desired turns upon the association between the SI cue stimulation and the reward stimulation in the medial forehrain bundle (MFB).展开更多
This paper presents an investigation into the characteristics of interior noise of a Chinese high-speed train under several typical conditions. Interior noises within Vehicle TC01, which can be used as a head car or a...This paper presents an investigation into the characteristics of interior noise of a Chinese high-speed train under several typical conditions. Interior noises within Vehicle TC01, which can be used as a head car or an end car, and Vehicle TP03, the third car counting from TC01, are measured for the train running at speeds from 260 km/h to 385 km/h, along two types of track including a slab track and a ballast track and either on the ground surface or in a tunnel. Data analyses are performed for sound pressure overall levels, frequency, area contributions, and possible generation mechanisms, showing how they are affected by train speed, running direction, track type, and tunnel. The results show that, whether TC01 is used as head car or end car, the interior noise characteristics in the VIP cabin are mostly related to aerodynamic noise. Differences in interior noise between tracks become smaller as the train speed increases. The effect of a tunnel on the interior noise is more important for the middle coach than that for the head coach. This study can provide a basis for noise control of high-speed trains.展开更多
This paper develops a coupled dynamics model for a linear induction motor (LIM) vehicle and a subway track to investigate the influence of polygonal wheels of the vehicle on the dynamic behavior of the system. In th...This paper develops a coupled dynamics model for a linear induction motor (LIM) vehicle and a subway track to investigate the influence of polygonal wheels of the vehicle on the dynamic behavior of the system. In the model, the vehicle is modeled as a multi-body system with 35 degrees of freedom. A Timoshenko beam is used to model the rails which are discretely supported by sleepers. The sleepers are modeled as rigid bodies with their vertical, lateral, and rolling motions being considered. In order to simulate the vehicle running along the track, a moving sleeper support model is introduced to simulate the excitation by the discrete sleeper supporters, in which the sleepers are assumed to move backward at a constant speed that is the same as the train speed. The Hertzian contact theory and the Shen– Hedrick–Elkins’ model are utilized to deal with the normal dynamic forces and the tangential forces between wheels and rails, respectively. In order to better characterize the linear metro system (LMS), Euler beam theory based on modal superposition method is used to model LIM and RP. The vertical electric magnetic force and the lateral restoring force between the LIM and RP are also taken into consideration. The former has gap-varying nonlinear characteristics, whilst the latter is considered as a constant restoring force of 1 kN. The numerical analysis considers the effect of the excitation due to polygonal wheels on the dynamic behavior of the system at different wear stages, in which the used data regarding the polygonal wear on the wheel tread are directly measured at the subway site.展开更多
The running safety of high-speed trains has become a major concern of the current railway research with the rapid development of high-speed railways around the world.The basic safety requirement is to prevent the dera...The running safety of high-speed trains has become a major concern of the current railway research with the rapid development of high-speed railways around the world.The basic safety requirement is to prevent the derailment.The root causes of the dynamic derailment of highspeed trains operating in severe environments are not easy to identify using the field tests or laboratory experiments.Numerical simulation using an advanced train–track interaction model is a highly efficient and low-cost approach to investigate the dynamic derailment behavior and mechanism of high-speed trains.This paper presents a three-dimensional dynamic model of a high-speed train coupled with a ballast track for dynamic derailment analysis.The model considers a train composed of multiple vehicles and the nonlinear inter-vehicle connections.The ballast track model consists of rails,fastenings,sleepers,ballasts,and roadbed,which are modeled by Euler beams,nonlinear spring-damper elements,equivalent ballast bodies,and continuous viscoelastic elements,in which the modal superposition method was used to reduce the order of the partial differential equations of Euler beams.The commonly used derailment safety assessment criteria around the world are embedded in the simulation model.The train–track model was then used to investigate the dynamic derailment responses of a high-speed train passing over a buckled track,in which the derailmentmechanism and train running posture during the dynamic derailment process were analyzed in detail.The effects of train and track modelling on dynamic derailment analysis were also discussed.The numerical results indicate that the train and track modelling options have a significant effect on the dynamic derailment analysis.The inter-vehicle impacts and the track flexibility and nonlinearity should be considered in the dynamic derailment simulations.展开更多
In this paper, we present a comprehensive model for the prediction of the evolution of high-speed train wheel profiles due to wear. The model consists of four modules: a multi-body model implemented with the commerci...In this paper, we present a comprehensive model for the prediction of the evolution of high-speed train wheel profiles due to wear. The model consists of four modules: a multi-body model implemented with the commercial multi-body software SIMPACK to evaluate the dynamic response of the vehicle and track; a local contact model based on Hertzian theory and a novel method, named FaStrip (Sichani et al., 2016), to calculate the normal and tangential forces, respectively; a wear model proposed by the University of Sheffield (known as the USFD wear function) to estimate the amount of material removed and its distribution along the wheel profile; and a smoothing and updating strategy. A simulation of the wheel wear of the high-speed train CRH3 in service on the Wuhan-Guangzhou railway line was performed. A virtual railway line based on the statistics of the line was used to represent the entire real track. The model was validated using the wheel wear data of the CRH3 operating on the Wuhan- Guangzhou line, monitored by the authors' research group. The results of the predictions and measurements were in good agreement.展开更多
基金Project supported by the National Natural Science Foundation of China (No. U 1134202)
文摘This paper presents a detailed investigation, via field experiment, into the mechanism of high-order polygonal wear of wheels of a new type of high-speed train. The investigation was carried out during the performance acceptance test of the train and its initial commercial operation. The investigation covered the performance acceptance test of 150 000 km and the commercial operation of about 150 000 km. In the performance acceptance test of the first stage of about 70 000 km, at 200-250 km/h with full loading and sometimes overloading by 30%, the serious polygonal wear of 23-order took place on all the wheels of the train, and was measured and analyzed in detail. All the potygonized wheels were re-profiled because the polygonal wear had caused strong vibration and damage to the train parts. After re-profiling, the vibration of the train and track and the wear status of the wheels were measured and analyzed at different test mileages according to the polygonal wear situation of the wheels. The measured vibration of the train includes the accelerations at different positions of a motor car and a trail car. The vibration modes of the key parts of the bogies of the two cars were calculated. Meanwhile, the track resonant frequencies were investigated at the site. The purpose of the above tests and analysis is try to find the frequency of work mode matching the passing frequency of the high-order wheel polygon. The present investigation shows that one of the working models causes the formation and development of the high-order wheel polygonal wear. The growth of this wear was effectively reduced through the frequent changing of the running speed of the train operating on the way back and forth every day.
基金supported by the National Basic Research Program(973)of China(No.2011CB711103)the National High-Tech R&D Program(863)of China(No.2011AA11A103-2-2)the National Natural Science Foundations of China(Nos.U1134202,U1434201,and 51475390)
基金supported by the National Natural Science Foundation of China(Nos.U1134202,51275430,and 51305361)the National Basic Research Program (973) of China(No.2011CB711103)the Program for Changjiang Scholars and Innovative Research Team in University(Nos.IRT1178 and SWJTU12ZT01),China
文摘AIM: To analyze the clinical features and risk factors of adverse reactions associated with telbivudine. METHODS: Clinical data were collected from cases that presented with serious adverse reactions to telbivudine. We analyzed general information and medicine status, clinical features, results of examination, and misdiagnosis. RESULTS: Out of 105 patients who were treated with telbivudine for hepatitis B in an outpatient department from January, 2007 to January, 2008, five presented with serious adverse drug reactions. Most of these five patients had used other nucleoside analogues in the past. Four were treated with a combination of telbivudine and interferon or another nucleoside analogue, while the other received an increased dose of telbivudine. The main adverse reactions were myalgia and general weakness. This was accompanied by cardiac arrhythmia in one patient, and nervous symptoms in three. Serum creatine kinase was elevated. The rate of misdiagnosis was high. CONCLUSION: The adverse reactions were related to telbivudine, but the biological mechanism of the reactions is not yet clear. Combination therapy with interferon or another nucleoside analogue and a high dose may increase the risk of adverse reactions.
基金supported by the National Natural Science Foundation of China(Nos.51475390 and U1434201)the National High-Tech R&D Program(863)of China(No.2011AA11A103-2-2)the Program for Changjiang Scholars and Innovative Research Team in University(Nos.IRT1178 and SWJTU12ZT01),China
基金Project supported by the Zhejiang University Grant for Multiple Discipline Associated Research, Zhejiang University, China
文摘A remote control system has been developed to deliver stimuli into the rat brain through a wireless micro-stimulator for animal behavior training. The system consists of the following main components: an integrated PC control program, a transmitter and a receiver based on Bluetooth (BT) modules, a stimulator controlled by C8051 microprocessor, as well as an operant chamber and an eight-arm radial maze. The micro-stimulator is featured with its changeable amplitude of pulse output for both constant-voltage and constant-current mode, which provides an easy way to set the proper suitable stimulation intensity for different training. The system has been used in behavior experiments for monitoring and recording bar-pressing in the operant chamber, controlling rat roaming in the eight-arm maze, as well as navigating rats through a 3D obstacle route. The results indicated that the system worked stably and that the stimulation was effective for different types of rat behavior controls. In addition, the results showed that stimulation in the whisker barrel region of rat primary somatosensory cortex (SI) acted like a cue. The animals can be trained to take different desired turns upon the association between the SI cue stimulation and the reward stimulation in the medial forehrain bundle (MFB).
基金supported by the National Natural Science Foundation of China(Nos.51475390 and U1434201)the National High-Tech R&D Program(863)of China(No.2011AA11A103-4-2)+1 种基金the Fundamental Research Funds for the Central Universitiesthe 2013 Doctoral Innovation Funds of Southwest Jiaotong University,China
基金Project supported by the National Natural Science Foundation of China (Nos. 51475390 and U 1434201), the National Key Technology R&D Program of China (Nos. 2016YFB1200506-08 and 2016YFB1200503-02), and the Scientific Research Foundation of State Key Laboratory of Traction Power (No. 2015TPL_T08), China
文摘This paper presents an investigation into the characteristics of interior noise of a Chinese high-speed train under several typical conditions. Interior noises within Vehicle TC01, which can be used as a head car or an end car, and Vehicle TP03, the third car counting from TC01, are measured for the train running at speeds from 260 km/h to 385 km/h, along two types of track including a slab track and a ballast track and either on the ground surface or in a tunnel. Data analyses are performed for sound pressure overall levels, frequency, area contributions, and possible generation mechanisms, showing how they are affected by train speed, running direction, track type, and tunnel. The results show that, whether TC01 is used as head car or end car, the interior noise characteristics in the VIP cabin are mostly related to aerodynamic noise. Differences in interior noise between tracks become smaller as the train speed increases. The effect of a tunnel on the interior noise is more important for the middle coach than that for the head coach. This study can provide a basis for noise control of high-speed trains.
文摘This paper develops a coupled dynamics model for a linear induction motor (LIM) vehicle and a subway track to investigate the influence of polygonal wheels of the vehicle on the dynamic behavior of the system. In the model, the vehicle is modeled as a multi-body system with 35 degrees of freedom. A Timoshenko beam is used to model the rails which are discretely supported by sleepers. The sleepers are modeled as rigid bodies with their vertical, lateral, and rolling motions being considered. In order to simulate the vehicle running along the track, a moving sleeper support model is introduced to simulate the excitation by the discrete sleeper supporters, in which the sleepers are assumed to move backward at a constant speed that is the same as the train speed. The Hertzian contact theory and the Shen– Hedrick–Elkins’ model are utilized to deal with the normal dynamic forces and the tangential forces between wheels and rails, respectively. In order to better characterize the linear metro system (LMS), Euler beam theory based on modal superposition method is used to model LIM and RP. The vertical electric magnetic force and the lateral restoring force between the LIM and RP are also taken into consideration. The former has gap-varying nonlinear characteristics, whilst the latter is considered as a constant restoring force of 1 kN. The numerical analysis considers the effect of the excitation due to polygonal wheels on the dynamic behavior of the system at different wear stages, in which the used data regarding the polygonal wear on the wheel tread are directly measured at the subway site.
基金supported by the National Natural Science Foundation of China(No.U1134202)the National Basic Research Program(973)of China(No.2011CB711103)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in University(Nos.IRT1178 and SWJTU12ZT01)the Fundamental Research Funds for the Central Universitiesthe 2014 Doctoral Innovation Funds of Southwest Jiaotong University,China
基金supported by the National Basic Research Program(973)of China(2011CB711103)the National Natural Science Foundation of China(U1134202)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University(IRT1178 and SWJTU12ZT01)the 2013 Cultivation Program for the Excellent Doctoral Dissertation of Southwest Jiaotong University
文摘The running safety of high-speed trains has become a major concern of the current railway research with the rapid development of high-speed railways around the world.The basic safety requirement is to prevent the derailment.The root causes of the dynamic derailment of highspeed trains operating in severe environments are not easy to identify using the field tests or laboratory experiments.Numerical simulation using an advanced train–track interaction model is a highly efficient and low-cost approach to investigate the dynamic derailment behavior and mechanism of high-speed trains.This paper presents a three-dimensional dynamic model of a high-speed train coupled with a ballast track for dynamic derailment analysis.The model considers a train composed of multiple vehicles and the nonlinear inter-vehicle connections.The ballast track model consists of rails,fastenings,sleepers,ballasts,and roadbed,which are modeled by Euler beams,nonlinear spring-damper elements,equivalent ballast bodies,and continuous viscoelastic elements,in which the modal superposition method was used to reduce the order of the partial differential equations of Euler beams.The commonly used derailment safety assessment criteria around the world are embedded in the simulation model.The train–track model was then used to investigate the dynamic derailment responses of a high-speed train passing over a buckled track,in which the derailmentmechanism and train running posture during the dynamic derailment process were analyzed in detail.The effects of train and track modelling on dynamic derailment analysis were also discussed.The numerical results indicate that the train and track modelling options have a significant effect on the dynamic derailment analysis.The inter-vehicle impacts and the track flexibility and nonlinearity should be considered in the dynamic derailment simulations.
基金Project supported by the National Natural Science Foundation of China (Nos. U 1434201, 51275427, and 51605394), and the Scientific Research Foundation of State Key Laboratory of Traction Power (No. 2015TPL_T01 ), China
文摘In this paper, we present a comprehensive model for the prediction of the evolution of high-speed train wheel profiles due to wear. The model consists of four modules: a multi-body model implemented with the commercial multi-body software SIMPACK to evaluate the dynamic response of the vehicle and track; a local contact model based on Hertzian theory and a novel method, named FaStrip (Sichani et al., 2016), to calculate the normal and tangential forces, respectively; a wear model proposed by the University of Sheffield (known as the USFD wear function) to estimate the amount of material removed and its distribution along the wheel profile; and a smoothing and updating strategy. A simulation of the wheel wear of the high-speed train CRH3 in service on the Wuhan-Guangzhou railway line was performed. A virtual railway line based on the statistics of the line was used to represent the entire real track. The model was validated using the wheel wear data of the CRH3 operating on the Wuhan- Guangzhou line, monitored by the authors' research group. The results of the predictions and measurements were in good agreement.