3 mm thick 400 MPa grade ultrafine grained ferritic steel plates were bead-on-plate welded by CO2 laser with heat input of 120-480 J/mm. The microstructures of the weld metal mainly consist of bainite, which form is l...3 mm thick 400 MPa grade ultrafine grained ferritic steel plates were bead-on-plate welded by CO2 laser with heat input of 120-480 J/mm. The microstructures of the weld metal mainly consist of bainite, which form is lower bainite plates or polygonal ferrite containing quantities of dispersed cementite particles, mixed with a few of low carbon martensite laths or ferrite, depending on the heat input. The hardness and the tensile strength of the weld metal are higher than those of the base metal, and monotonously increase as the heat input decreases. No softened zone exists in heat affected zone (HAZ). Compared with the base metal, although the grains of laser weld are much larger, the toughness of the weld metal is higher within a large range of heat input. Furthermore, as the heat input increases, the toughness of the weld metal rises to a maximum value, at which point the percentage of lower bainite is the highest, and then drops.展开更多
In this paper, the microstructures and mechanical properties of underwater laser welds of Type 304 stainless steel were investigated. JISY308L type filler wire was used as filler wire during welding. A gas-shielding n...In this paper, the microstructures and mechanical properties of underwater laser welds of Type 304 stainless steel were investigated. JISY308L type filler wire was used as filler wire during welding. A gas-shielding nozzle was used to form a local dry cavity surrounding the welding zone. The main results are summarized as follows: (1) The shielding condition of the local dry cavity severely affects the oxygen content of the weld, the worst shielding condition leading to the oxygen content of 800×10-6, which largely increases the oxide inclusions and somewhat reduces the ferrite content. (2) The increase of oxygen content reduces the elongation rate and reduction of area in tensile test, but has no influence on the tensile strength. (3) In appropriate shielding condition, the mechanical properties of the underwater laser welds can be as same as that in the air.展开更多
基金This work was supported by the‘973'ScienceTechnology Development Plan of the National Basic Research Foundation(No.1998061500)the 985'Foundation of Tsinghua University.
文摘3 mm thick 400 MPa grade ultrafine grained ferritic steel plates were bead-on-plate welded by CO2 laser with heat input of 120-480 J/mm. The microstructures of the weld metal mainly consist of bainite, which form is lower bainite plates or polygonal ferrite containing quantities of dispersed cementite particles, mixed with a few of low carbon martensite laths or ferrite, depending on the heat input. The hardness and the tensile strength of the weld metal are higher than those of the base metal, and monotonously increase as the heat input decreases. No softened zone exists in heat affected zone (HAZ). Compared with the base metal, although the grains of laser weld are much larger, the toughness of the weld metal is higher within a large range of heat input. Furthermore, as the heat input increases, the toughness of the weld metal rises to a maximum value, at which point the percentage of lower bainite is the highest, and then drops.
基金supported by the Natural Science Foundation of Tsinghua University
文摘In this paper, the microstructures and mechanical properties of underwater laser welds of Type 304 stainless steel were investigated. JISY308L type filler wire was used as filler wire during welding. A gas-shielding nozzle was used to form a local dry cavity surrounding the welding zone. The main results are summarized as follows: (1) The shielding condition of the local dry cavity severely affects the oxygen content of the weld, the worst shielding condition leading to the oxygen content of 800×10-6, which largely increases the oxide inclusions and somewhat reduces the ferrite content. (2) The increase of oxygen content reduces the elongation rate and reduction of area in tensile test, but has no influence on the tensile strength. (3) In appropriate shielding condition, the mechanical properties of the underwater laser welds can be as same as that in the air.