Some properties of convex cones are obtained and are used to derive several equivalent conditions as well as another important property for nearly cone-subconvexlike set-valued functions. Under the assumption of nearl...Some properties of convex cones are obtained and are used to derive several equivalent conditions as well as another important property for nearly cone-subconvexlike set-valued functions. Under the assumption of nearly cone-subconvexlikeness,a Lagrangian multiplier theorem on Benson proper efficiency is presented. Related results are generalized.展开更多
Five kinds of cones are introduced, which are used to establish the constraints qualifications, under which the generalized Kuhn-Tucker necessary conditions are developed for a class of generalized (h,φ)-differentiab...Five kinds of cones are introduced, which are used to establish the constraints qualifications, under which the generalized Kuhn-Tucker necessary conditions are developed for a class of generalized (h,φ)-differentiable single-objective and multiobjective programming problems by using Motzkin's alternative theorem and Ben-Tal generalized algebraic operations.展开更多
文摘Some properties of convex cones are obtained and are used to derive several equivalent conditions as well as another important property for nearly cone-subconvexlike set-valued functions. Under the assumption of nearly cone-subconvexlikeness,a Lagrangian multiplier theorem on Benson proper efficiency is presented. Related results are generalized.
基金This research is supported by the National Natural Science Foundation of China Grant 10261006, the Foundation of Education Section of Excellent Doctorial Theses Grant 200217 and the Basic Theory Foundation of Nanchang University.
文摘Five kinds of cones are introduced, which are used to establish the constraints qualifications, under which the generalized Kuhn-Tucker necessary conditions are developed for a class of generalized (h,φ)-differentiable single-objective and multiobjective programming problems by using Motzkin's alternative theorem and Ben-Tal generalized algebraic operations.